• Previous Article
    Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type
  • CPAA Home
  • This Issue
  • Next Article
    Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux
March  2014, 13(2): 859-880. doi: 10.3934/cpaa.2014.13.859

The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  December 2012 Revised  June 2013 Published  October 2013

We consider again the sixth order Cahn-Hilliard type equation with a nonlinear diffusion, addressed in our previous paper in Commun. Pure Appl. Anal. 10 (2011), 1823--1847. Such PDE arises as a model of oil-water-surfactant mixtures. Applying the approach based on the Bäcklund transformation and the Leray-Schauder fixed point theorem we generalize the existence result of the above mentioned paper by imposing weaker assumptions on the data. Here we prove the global unique solvability of the problem in the Sobolev space $H^{6,1}(\Omega\times(0,T))$ under the assumption that the initial datum is in $H^3(\Omega)$ whereas previously $H^6(\Omega)$-regularity was required. Moreover, we admit a broarder class of nonlinear terms in the free energy potential.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859
References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008).   Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006).   Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975).   Google Scholar

[4]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E., 70 (2004).   Google Scholar

[5]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002).   Google Scholar

[6]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E., 50 (1994), 1325.   Google Scholar

[7]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E., 47 (1993), 4289.   Google Scholar

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E., 47 (1993), 4301.   Google Scholar

[9]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems,, Phys. Rev. Lett., 65 (1990), 1116.   Google Scholar

[10]

G. Gompper and M. Schick, Self-assembling amphiphilic system,, in, 16 (1994).   Google Scholar

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures,, Phys. Rev. A, 46 (1992), 4836.   Google Scholar

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. Mod. Phys., 49 (1977), 435.   Google Scholar

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations,, SIAM J. Appl. Math, 69 (2008), 348.   Google Scholar

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, SIAM J. Math. Anal., 44 (2012), 3369.   Google Scholar

[15]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, SIAM J. Appl. Math., 72 (2012), 1343.   Google Scholar

[16]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications,", Vol. I, (1972).   Google Scholar

[17]

V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter,, Physics Letters A, 327 (2004), 455.   Google Scholar

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823.   Google Scholar

[19]

I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517.   Google Scholar

[20]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003).   Google Scholar

[21]

S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31.   Google Scholar

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133.   Google Scholar

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Stieklov, 83 (1965), 1.   Google Scholar

show all references

References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008).   Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006).   Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975).   Google Scholar

[4]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E., 70 (2004).   Google Scholar

[5]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002).   Google Scholar

[6]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E., 50 (1994), 1325.   Google Scholar

[7]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E., 47 (1993), 4289.   Google Scholar

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E., 47 (1993), 4301.   Google Scholar

[9]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems,, Phys. Rev. Lett., 65 (1990), 1116.   Google Scholar

[10]

G. Gompper and M. Schick, Self-assembling amphiphilic system,, in, 16 (1994).   Google Scholar

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures,, Phys. Rev. A, 46 (1992), 4836.   Google Scholar

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. Mod. Phys., 49 (1977), 435.   Google Scholar

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations,, SIAM J. Appl. Math, 69 (2008), 348.   Google Scholar

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, SIAM J. Math. Anal., 44 (2012), 3369.   Google Scholar

[15]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, SIAM J. Appl. Math., 72 (2012), 1343.   Google Scholar

[16]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications,", Vol. I, (1972).   Google Scholar

[17]

V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter,, Physics Letters A, 327 (2004), 455.   Google Scholar

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823.   Google Scholar

[19]

I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517.   Google Scholar

[20]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003).   Google Scholar

[21]

S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31.   Google Scholar

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133.   Google Scholar

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Stieklov, 83 (1965), 1.   Google Scholar

[1]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[6]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[11]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[12]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[13]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[14]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[15]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[16]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[17]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[18]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[19]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]