\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation

Abstract Related Papers Cited by
  • We consider again the sixth order Cahn-Hilliard type equation with a nonlinear diffusion, addressed in our previous paper in Commun. Pure Appl. Anal. 10 (2011), 1823--1847. Such PDE arises as a model of oil-water-surfactant mixtures. Applying the approach based on the Bäcklund transformation and the Leray-Schauder fixed point theorem we generalize the existence result of the above mentioned paper by imposing weaker assumptions on the data. Here we prove the global unique solvability of the problem in the Sobolev space $H^{6,1}(\Omega\times(0,T))$ under the assumption that the initial datum is in $H^3(\Omega)$ whereas previously $H^6(\Omega)$-regularity was required. Moreover, we admit a broarder class of nonlinear terms in the free energy potential.
    Mathematics Subject Classification: Primary: 35K35, 35K60; Secondary: 35Q72, 35L205.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation, Phys. Rev. E, 77 (2008), 061506.

    [2]

    J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 73 (2006), 031609.

    [3]

    O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings," Nauka, Moscow, 1975 (in Russian).

    [4]

    K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E., 70 (2004), 051605.

    [5]

    K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett., 88 (2002), 245701.

    [6]

    G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E., 50 (1994), 1325-1335.

    [7]

    G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E., 47 (1993), 4289-4300.

    [8]

    G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E., 47 (1993), 4301-4312.

    [9]

    G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119.

    [10]

    G. Gompper and M. Schick, Self-assembling amphiphilic system, in "Phase Transitions and Critical Phenomena" (eds. C. Domb and J. Lebowitz), Academic Press, London, 16 (1994).

    [11]

    G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures, Phys. Rev. A, 46 (1992), 4836-4851.

    [12]

    P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479.

    [13]

    M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations, SIAM J. Appl. Math, 69 (2008), 348-374. Available from: http://dx.doi.org/10.1137/070710949

    [14]

    M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation, SIAM J. Math. Anal., 44 (2012), 3369-3387. Available from: http://dx.doi.org/10.1137/100817590

    [15]

    M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation, SIAM J. Appl. Math., 72 (2012), 1343-1360. Available from: http://dx.doi.org/10.1137/110834123

    [16]

    J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications," Vol. I, II, Springer Verlag, New York, 1972.

    [17]

    V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter, Physics Letters A, 327 (2004), 455-460.

    [18]

    I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847. Available from: http://dx.doi.org/10.3934/cpaa.2011.10.1823

    [19]

    I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517-546. Available from: http://dx.doi.org/10.3934/dcdss.2013.6.517

    [20]

    T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, 67 (2003), 021606. Available from: http://dx.doi.org/10.1137/110835608

    [21]

    S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63. Available from: http://dx.doi.org/10.1137/110835608

    [22]

    V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations, Trudy Mat. Inst. Steklov, 70 (1964), 133-212 (in Russian).

    [23]

    V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type, Trudy Mat. Inst. Stieklov, 83 (1965), 1-162 (in Russian).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return