\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasilinear retarded differential equations with functional dependence on piecewise constant argument

Abstract Related Papers Cited by
  • We introduce a new class of differential equations, retarded differential equations with functional dependence on piecewise constant argument, $RFDEPCA$ and focus on quasilinear systems. Formulation of the initial value problem, bounded solutions, periodic and almost periodic solutions, their stability are under investigation. Illustrating examples are provided.
    Mathematics Subject Classification: Primary: 34; Secondary: 34K13, 34K14, 34K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Alonso, J. Hong and R. Obaya, Almost periodic type solutions of differential equations with piecewise constant argument via almost periodic type sequences, Appl. Math. Lett., 13 (2000), 131-137.doi: 10.1016/S0893-9659(99)00176-7.

    [2]

    M. U. Akhmet, On the integral manifolds of the differential equations with piecewise constant argument of generalized type, in "Proceedings of the Conference on Differential and Difference Equations at the Florida Institute of Technology," August 1-5, 2005, Melbourne, Florida, Editors: R.P. Agarval and K. Perera, Hindawi Publishing Corporation, 2006, 11-20.

    [3]

    M. U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal., 66 (2007), 367-383.doi: 10.1016/j.na.2005.11.032.

    [4]

    M. U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type, J. Math. Anal. Appl., 336 (2007), 646-663.doi: 10.1016/j.jmaa.2007.03.010.

    [5]

    M. U. Akhmet, "Nonlinear Hybrid Continuous/Discrete Time Models," Amsterdam, Paris, Antlantis Press, 2011.doi: 10.2991/978-94-91216-03-9.

    [6]

    M. U. Akhmet, Stability of differential equations with piecewise constant argument of generalized type, Nonlinear Analysis: TMA, 68 (2008), 794-803.doi: 10.1016/j.na.2006.11.037.

    [7]

    M. U. Akhmet, Exponentially dichotomous linear systems of differential equations with piecewise constant argument, Discontinuity, Nonlinearity and Complexity, 1 (2012), 337-352.

    [8]

    M. U. Akhmet and D. Aruğaslan, Lyapunov-Razumikhin method for differential equations with piecewise constant argument, Discrete Contin. Dyn. Syst., 25 (2009), 457-466.doi: 10.3934/dcds.2009.25.457.

    [9]

    M. U. Akhmet, D. Aruğaslan and E. Yilmaz, Method of Lyapunov functions for differential equations with piecewise constant delay, J. Comput. Appl. Math., 235 (2011), 4554-4560.doi: 10.1016/j.cam.2010.02.043.

    [10]

    M. U. Akhmet, D. Aruğaslan and E. Yilmaz, Stability analysis of recurrent neural networks with piecewise constant argument of generalized type, Neural Networks, 23 (2010), 805-811.

    [11]

    M. U. Akhmet, D. Aruğaslan and E. Yilmaz, Method of Lyapunov functions for differential equations with piecewise constant delay, J. Comput. Appl. Math., 235 (2011), 4554-4560.doi: 10.1016/j.cam.2010.02.043.

    [12]

    M. U. Akhmet and C. Buyukadali, Differential equations with a state-dependent piecewise constant argument, Nonlinear Analysis: TMA, 72 (2010), 4200-4210.doi: 10.1016/j.na.2010.01.050.

    [13]

    M. U. Akhmet and C. Buyukadali, Periodic solutions of the system with piecewise constant argument in the critical case, Comput. Math. Appl., 56 (2008), 2034-2042.doi: 10.1016/j.camwa.2008.03.031.

    [14]

    M. U. Akhmetov, N. A. Perestyuk and A. M. Samoilenko, Almost-periodic solutions of differential equations with impulse action, (Russian) Akad. Nauk Ukrain. SSR Inst., Mat. Preprint, 26 (1983), 49.

    [15]

    G. Bao, S. Wen and Zh. Zeng, Robust stability analysis of interval fuzzy CohenGrossberg neural networks with piecewise constant argument of generalized type, Neural Networks, 33 (2012), 32-41.

    [16]

    S. Busenberg and K. L. Cooke, Models of vertically transmitted diseases with sequential-continuous dynamics, Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, (1982), 179-187.

    [17]

    T. A. Burton, "Stability and Periodic Solutions of Ordinary and Functional Differential Equations," Academic Press, Orlando, Florida, 1985.

    [18]

    K. L. Cooke and J. Wiener, Neutral differential equations with piecewise constant argument, Boll. Un. Mat. Ital., 7 (1987), 321-346.

    [19]

    L. Dai, "Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments," World Scientific, Hackensack, NJ, 2008.doi: 10.1142/9789812818515.

    [20]

    A. Halanay and D. Wexler, "Qualitative Theory of Impulsive Systems," (Russian), Moscow, Mir, 1971.

    [21]

    J. Hale , "Functional Differential Equations," Springer, New-York, 1971.

    [22]

    A. M. Fink, "Almost-periodic Differential Equations," Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

    [23]

    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, Boston, New Yorke, 1993.

    [24]

    M. Pinto, Asymptotic equivalence of nonlinear and quasi linear differential equations with piecewise constant arguments, Math. Comput. Modelling, 49 (2009), 1750-1758.doi: 10.1016/j.mcm.2008.10.001.

    [25]

    A. Samoilenko and N. Perestyuk, "Impulsive Differential Equations," World Scientific, Singapore, 1995.doi: 10.1142/9789812798664.

    [26]

    S. M. Shah and J. Wiener, Advanced differential equations with piecewise constant argument deviations, Int. J. Math. Math. Sci., 6 (1983), 671-703.doi: 10.1155/S0161171283000599.

    [27]

    G. Seifert, Second-order neutral delay-differential equations with piecewise constant time dependence, J. Math. Anal. Appl., 281 (2003), 1-9.doi: 10.1016/S0022-247X(02)00303-7.

    [28]

    G. Seifert, Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence, J. Differential Equations, 164 (2000), 451-458.doi: 10.1006/jdeq.1999.3747.

    [29]

    G. Wang, Periodic solutions of a neutral differential equation with piecewise constant arguments, J. Math. Anal. Appl., 326 (2007), 736-747.doi: 10.1016/j.jmaa.2006.02.093.

    [30]

    G. Q. Wang and S. S. Cheng, Note on the set of periodic solutions of a delay differential equation with piecewise constant argument, Int. J. Pure Appl. Math., 9 (2003), 139-143.

    [31]

    L. Wang, R. Yuan and C. Zhang, A spectrum relation of almost periodic solution of second order scalar functional differential equations with piecewise constant argument, Acta Mathematica Sinica, English Series, 27 (2011), 2275-284.doi: 10.1007/s10114-011-8392-8.

    [32]

    Y. Wang and J. Yan, A necessary and sufficient condition for the oscillation of a delay equation with continuous and piecewise constant arguments, Acta Math. Hungar., 79 (1998), 229-235.doi: 10.1023/A:1006510024909.

    [33]

    Y. Wang and J. Yan, Necessary and sufficient condition for the global attractivity of the trivial solution of a delay equation with continuous and piecewise constant arguments, Appl. Math. Lett., 10 (1997), 91-96.doi: 10.1016/S0893-9659(97)00089-X.

    [34]

    D. Wexler, Solutions périodiques et presque-périodiques des systémes d'équations différetielles linéaires en distributions, J. Differential Equations., 2 (1966), 12-32.

    [35]

    J. Wiener, "Generalized Solutions of Functional Differential Equations," World Scientific, Singapore, 1993.

    [36]

    R. Yuan, The existence of almost periodic solutions of retarded differential equations with piecewise argument, Nonlinear Analysis, Theory, Methods and Applications, 48 (2002), 1013-1032.doi: 10.1016/S0362-546X(00)00231-5.

    [37]

    R. Yuan, On the spectrum of almost periodic solution of second order scalar functional differential equations with piecewise constant argument, J. Math. Anal. Appl., 303 (2005), 103-118.doi: 10.1016/j.jmaa.2004.06.057.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return