- Previous Article
- CPAA Home
- This Issue
-
Next Article
Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space
Periodic solutions of the Brillouin electron beam focusing equation
1. | Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 1, 60131, Ancona, Italy |
2. | Departamento de Matemática Aplicada, Universidad de Granada, 18071, Granada, Spain |
References:
[1] |
V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves,, J. British Inst. Radio Engineer., 18 (1958), 696. Google Scholar |
[2] |
D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance,, Discrete Contin. Dyn. Syst., 8 (2002), 907.
doi: 10.3934/dcds.2002.8.907. |
[3] |
A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem,, Nonlinear Anal., 74 (2011), 4166.
doi: 10.1016/j.na.2011.03.051. |
[4] |
H. Broer and M. Levi, Geometrical aspects of stability theory for Hill's equations,, Arch. Rational Mech. Anal., 131 (1995), 225.
doi: 10.1007/BF00382887. |
[5] |
A. Cabada and J. A. Cid, On comparison principles for the periodic Hill's equation,, J. Lond. Math. Soc., 86 (2012), 272.
doi: 10.1112/jlms/jds001. |
[6] |
M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 231.
doi: 10.1017/S030821050003211X. |
[7] |
T. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31. Google Scholar |
[8] |
C. Fabry, Periodic solutions of the equation $x'' + f(t, x)=0$,, S\'eminaire de Math\'ematique, 117 (1987). Google Scholar |
[9] |
C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities,, Arch. Math. (Basel), 60 (1993), 266.
doi: 10.1007/BF01198811. |
[10] |
A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane,, J. Differential Equations, 252 (2012), 1369.
doi: 10.1016/j.jde.2011.08.005. |
[11] |
A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.
doi: 10.1016/j.na.2010.12.004. |
[12] |
W. Magnus and S. Winkler, "Hill's Equation,", corrected reprint of 1966 edition, (1966).
|
[13] |
J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing systems,, Discrete Cont. Dyn. Syst. Ser. B, 16 (2011), 385.
doi: 10.3934/dcdsb.2011.16.385. |
[14] |
P.J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system,, Math. Methods Appl. Sci., 23 (2000), 1139.
doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J. |
[15] |
P.J. Torres, Twist solutions of a Hill's equation with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.
|
[16] |
P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.
doi: 10.1016/S0022-0396(02)00152-3. |
[17] |
Q. Yao, Periodic positive solution to a class of singular second-order ordinary differential equations,, Acta Appl. Math., 110 (2010), 871.
doi: 10.1007/s10440-009-9482-9. |
[18] |
Y. Ye and X. Wang, Nonlinear differential equations arising in the theory of electron beam focusing,, Acta Math. Appl. Sinica, 1 (1978), 13.
|
[19] |
M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type,, J. Math. Anal. Appl., 203 (1996), 254.
doi: 10.1006/jmaa.1996.0378. |
[20] |
M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1099.
doi: 10.1017/S0308210500030080. |
[21] |
M. Zhang, Periodic solutions of equations of Emarkov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.
|
show all references
References:
[1] |
V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves,, J. British Inst. Radio Engineer., 18 (1958), 696. Google Scholar |
[2] |
D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance,, Discrete Contin. Dyn. Syst., 8 (2002), 907.
doi: 10.3934/dcds.2002.8.907. |
[3] |
A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem,, Nonlinear Anal., 74 (2011), 4166.
doi: 10.1016/j.na.2011.03.051. |
[4] |
H. Broer and M. Levi, Geometrical aspects of stability theory for Hill's equations,, Arch. Rational Mech. Anal., 131 (1995), 225.
doi: 10.1007/BF00382887. |
[5] |
A. Cabada and J. A. Cid, On comparison principles for the periodic Hill's equation,, J. Lond. Math. Soc., 86 (2012), 272.
doi: 10.1112/jlms/jds001. |
[6] |
M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 231.
doi: 10.1017/S030821050003211X. |
[7] |
T. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31. Google Scholar |
[8] |
C. Fabry, Periodic solutions of the equation $x'' + f(t, x)=0$,, S\'eminaire de Math\'ematique, 117 (1987). Google Scholar |
[9] |
C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities,, Arch. Math. (Basel), 60 (1993), 266.
doi: 10.1007/BF01198811. |
[10] |
A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane,, J. Differential Equations, 252 (2012), 1369.
doi: 10.1016/j.jde.2011.08.005. |
[11] |
A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.
doi: 10.1016/j.na.2010.12.004. |
[12] |
W. Magnus and S. Winkler, "Hill's Equation,", corrected reprint of 1966 edition, (1966).
|
[13] |
J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing systems,, Discrete Cont. Dyn. Syst. Ser. B, 16 (2011), 385.
doi: 10.3934/dcdsb.2011.16.385. |
[14] |
P.J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system,, Math. Methods Appl. Sci., 23 (2000), 1139.
doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J. |
[15] |
P.J. Torres, Twist solutions of a Hill's equation with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.
|
[16] |
P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.
doi: 10.1016/S0022-0396(02)00152-3. |
[17] |
Q. Yao, Periodic positive solution to a class of singular second-order ordinary differential equations,, Acta Appl. Math., 110 (2010), 871.
doi: 10.1007/s10440-009-9482-9. |
[18] |
Y. Ye and X. Wang, Nonlinear differential equations arising in the theory of electron beam focusing,, Acta Math. Appl. Sinica, 1 (1978), 13.
|
[19] |
M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type,, J. Math. Anal. Appl., 203 (1996), 254.
doi: 10.1006/jmaa.1996.0378. |
[20] |
M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1099.
doi: 10.1017/S0308210500030080. |
[21] |
M. Zhang, Periodic solutions of equations of Emarkov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.
|
[1] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[2] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[6] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[7] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[8] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[9] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[10] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[11] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[12] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[15] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[16] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[17] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[18] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[19] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[20] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]