\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic solutions of the Brillouin electron beam focusing equation

Abstract Related Papers Cited by
  • Quite unexpectedly with respect to the numerical and analytical results found in literature, we establish a new range for the real parameter $b$ for which the existence of $2\pi-$periodic solutions of the Brillouin focusing beam equation \begin{eqnarray} \ddot{x}+b(1+\cos t)x=\frac{1}{x} \end{eqnarray} is guaranteed. This is possible thanks to suitable nonresonance conditions acting on the rotation number of the solutions in the phase plane.
    Mathematics Subject Classification: Primary: 34B15, 34C25; Secondary: 34B16.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves, J. British Inst. Radio Engineer., 18 (1958), 696-708.

    [2]

    D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance, Discrete Contin. Dyn. Syst., 8 (2002), 907-930.doi: 10.3934/dcds.2002.8.907.

    [3]

    A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem, Nonlinear Anal., 74 (2011), 4166-4185.doi: 10.1016/j.na.2011.03.051.

    [4]

    H. Broer and M. Levi, Geometrical aspects of stability theory for Hill's equations, Arch. Rational Mech. Anal., 131 (1995), 225-240.doi: 10.1007/BF00382887.

    [5]

    A. Cabada and J. A. Cid, On comparison principles for the periodic Hill's equation, J. Lond. Math. Soc., 86 (2012), 272-290.doi: 10.1112/jlms/jds001.

    [6]

    M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 231-243.doi: 10.1017/S030821050003211X.

    [7]

    T. Ding, A boundary value problem for the periodic Brillouin focusing system, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38 (Chinese).

    [8]

    C. Fabry, Periodic solutions of the equation $x'' + f(t, x)=0$, Séminaire de Mathématique, 117 (1987), Louvain-la-Neuve.

    [9]

    C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math. (Basel), 60 (1993), 266-276.doi: 10.1007/BF01198811.

    [10]

    A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane, J. Differential Equations, 252 (2012), 1369-1391.doi: 10.1016/j.jde.2011.08.005.

    [11]

    A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Anal., 74 (2011), 2485-2496.doi: 10.1016/j.na.2010.12.004.

    [12]

    W. Magnus and S. Winkler, "Hill's Equation," corrected reprint of 1966 edition, Dover, New York, 1979.

    [13]

    J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing systems, Discrete Cont. Dyn. Syst. Ser. B, 16 (2011), 385-392.doi: 10.3934/dcdsb.2011.16.385.

    [14]

    P.J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system, Math. Methods Appl. Sci., 23 (2000), 1139-1143.doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J.

    [15]

    P.J. Torres, Twist solutions of a Hill's equation with singular term, Adv. Nonlinear Stud., 2 (2002), 279-287.

    [16]

    P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643-662.doi: 10.1016/S0022-0396(02)00152-3.

    [17]

    Q. Yao, Periodic positive solution to a class of singular second-order ordinary differential equations, Acta Appl. Math., 110 (2010), 871-883.doi: 10.1007/s10440-009-9482-9.

    [18]

    Y. Ye and X. Wang, Nonlinear differential equations arising in the theory of electron beam focusing, Acta Math. Appl. Sinica, 1 (1978), 13-41.

    [19]

    M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type, J. Math. Anal. Appl., 203 (1996), 254-269.doi: 10.1006/jmaa.1996.0378.

    [20]

    M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1099-1114.doi: 10.1017/S0308210500030080.

    [21]

    M. Zhang, Periodic solutions of equations of Emarkov-Pinney type, Adv. Nonlinear Stud., 6 (2006), 57-67.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return