Advanced Search
Article Contents
Article Contents

Essential perturbations of polynomial vector fields with a period annulus

Abstract Related Papers Cited by
  • Chicone--Jacobs and Iliev found the essential perturbations of quadratic systems when considering the problem of finding the cyclicity of a period annulus. Given a perturbation of a particular family of centers of polynomial differential systems of arbitrary degree for which the expressions of its Poincaré--Liapunov constants are known, we give the structure of its $k$-th Melnikov function. This allows to find the essential perturbations in concrete cases. We study here in detail the essential perturbations for all the centers of the differential systems \begin{eqnarray} \dot{x} = -y + P_{\rm d}(x,y), \quad \dot{y} = x + Q_{d}(x,y), \end{eqnarray} where $P_d$ and $Q_d$ are homogeneous polynomials of degree $d$, for $ d=2$ and $ d=3$.
    Mathematics Subject Classification: Primary: 34C23, 37G15; Secondary: 34C05, 34C25, 34C07.


    \begin{equation} \\ \end{equation}
  • [1]

    N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100 (1954), 1-19.


    A. Buică, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 331 (2007), 443-454.doi: 10.1016/j.jmaa.2006.09.008.


    M. Caubergh and F. Dumortier, Algebraic curves of maximal cyclicity, Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70.doi: 10.1017/S0305004105008807.


    M. Caubergh and A. Gasull, Absolute cyclicity, Lyapunov quantities and center conditions, J. Math. Anal. Appl., 366 (2010), 297-309.doi: 10.1016/j.jmaa.2010.01.010.


    C. Chicone and M. Jacobs, Bifurcations of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326.doi: 10.1016/0022-0396(91)90142-V.


    C. Christopher, Estimating limit cycle bifurcations from centers, in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35.doi: 10.1007/3-7643-7429-2_2.


    F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differential Equations, 110 (1994), 86-133.doi: 10.1006/jdeq.1994.1061.


    J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, in Actualités Mathématiques, Hermann, Paris, 1992.


    A. Gasull and J. Giné, Cyclicity versus Center problem, Qual. Theory Dyn. Syst., 9 (2010), 101-113.doi: 10.1007/s12346-010-0022-9.


    A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math., 31 (2001), 1277-1303.doi: 10.1216/rmjm/1021249441.


    A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants, Comput. Appl. Math., 20 (2001), 149-177.


    L. Gavrilov, Cyclicity of period annuli and principalization of Bautin ideals, Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507.doi: 10.1017/S0143385707000971.


    L. Gavrilov and D. Novikov, On the finite cyclicity of open period annuli, Duke Math. J., 152 (2010), 1-26.doi: 10.1215/00127094-2010-005.


    J. Giné, The nondegenerate center problem and the inverse integrating factor, Bull. Sci. Math., 130 (2006), 152-161.doi: 10.1016/j.bulsci.2005.09.001.


    D. Hilbert, Mathematical problems, Bull. Am. Math. Soc., 8 (1902), 437-479.doi: 10.1090/S0002-9904-1902-00923-3.


    I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161.doi: 10.1016/S0007-4497(98)80080-8.


    Yu. S. Il'yashenko, Finiteness theorems for limit cycles, in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991.


    Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008.


    Jibin Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.doi: 10.1142/S0218127403006352.


    P. Mardešić, M. Saavedra, M. Uribe and M. Wallace, Unfolding of the Hamiltonian triangle vector field, J. Dyn. Control Syst., 17 (2011), 291-310.doi: 10.1007/s10883-011-9120-5.


    H. Poincaré, Méemoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84.


    G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, pp. 91-158 in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952.


    V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser Boston, Inc., Boston, MA, 2009.doi: 10.1007/978-0-8176-4727-8.


    R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998.doi: 10.1007/978-3-0348-8798-4.


    R. Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst., 2 (2001), 67-78.doi: 10.1007/BF02969382.


    D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993.


    K. S. Sibirskiĭ, On the number of limit cycles in the neighborhood of a singular point, (Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47.


    S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.doi: 10.1007/BF03025291.

  • 加载中

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint