\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Essential perturbations of polynomial vector fields with a period annulus

Abstract Related Papers Cited by
  • Chicone--Jacobs and Iliev found the essential perturbations of quadratic systems when considering the problem of finding the cyclicity of a period annulus. Given a perturbation of a particular family of centers of polynomial differential systems of arbitrary degree for which the expressions of its Poincaré--Liapunov constants are known, we give the structure of its $k$-th Melnikov function. This allows to find the essential perturbations in concrete cases. We study here in detail the essential perturbations for all the centers of the differential systems \begin{eqnarray} \dot{x} = -y + P_{\rm d}(x,y), \quad \dot{y} = x + Q_{d}(x,y), \end{eqnarray} where $P_d$ and $Q_d$ are homogeneous polynomials of degree $d$, for $ d=2$ and $ d=3$.
    Mathematics Subject Classification: Primary: 34C23, 37G15; Secondary: 34C05, 34C25, 34C07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100 (1954), 1-19.

    [2]

    A. Buică, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 331 (2007), 443-454.doi: 10.1016/j.jmaa.2006.09.008.

    [3]

    M. Caubergh and F. Dumortier, Algebraic curves of maximal cyclicity, Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70.doi: 10.1017/S0305004105008807.

    [4]

    M. Caubergh and A. Gasull, Absolute cyclicity, Lyapunov quantities and center conditions, J. Math. Anal. Appl., 366 (2010), 297-309.doi: 10.1016/j.jmaa.2010.01.010.

    [5]

    C. Chicone and M. Jacobs, Bifurcations of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326.doi: 10.1016/0022-0396(91)90142-V.

    [6]

    C. Christopher, Estimating limit cycle bifurcations from centers, in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35.doi: 10.1007/3-7643-7429-2_2.

    [7]

    F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differential Equations, 110 (1994), 86-133.doi: 10.1006/jdeq.1994.1061.

    [8]

    J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, in Actualités Mathématiques, Hermann, Paris, 1992.

    [9]

    A. Gasull and J. Giné, Cyclicity versus Center problem, Qual. Theory Dyn. Syst., 9 (2010), 101-113.doi: 10.1007/s12346-010-0022-9.

    [10]

    A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math., 31 (2001), 1277-1303.doi: 10.1216/rmjm/1021249441.

    [11]

    A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants, Comput. Appl. Math., 20 (2001), 149-177.

    [12]

    L. Gavrilov, Cyclicity of period annuli and principalization of Bautin ideals, Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507.doi: 10.1017/S0143385707000971.

    [13]

    L. Gavrilov and D. Novikov, On the finite cyclicity of open period annuli, Duke Math. J., 152 (2010), 1-26.doi: 10.1215/00127094-2010-005.

    [14]

    J. Giné, The nondegenerate center problem and the inverse integrating factor, Bull. Sci. Math., 130 (2006), 152-161.doi: 10.1016/j.bulsci.2005.09.001.

    [15]

    D. Hilbert, Mathematical problems, Bull. Am. Math. Soc., 8 (1902), 437-479.doi: 10.1090/S0002-9904-1902-00923-3.

    [16]

    I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161.doi: 10.1016/S0007-4497(98)80080-8.

    [17]

    Yu. S. Il'yashenko, Finiteness theorems for limit cycles, in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991.

    [18]

    Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008.

    [19]

    Jibin Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.doi: 10.1142/S0218127403006352.

    [20]

    P. Mardešić, M. Saavedra, M. Uribe and M. Wallace, Unfolding of the Hamiltonian triangle vector field, J. Dyn. Control Syst., 17 (2011), 291-310.doi: 10.1007/s10883-011-9120-5.

    [21]

    H. Poincaré, Méemoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84.

    [22]

    G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, pp. 91-158 in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952.

    [23]

    V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser Boston, Inc., Boston, MA, 2009.doi: 10.1007/978-0-8176-4727-8.

    [24]

    R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998.doi: 10.1007/978-3-0348-8798-4.

    [25]

    R. Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst., 2 (2001), 67-78.doi: 10.1007/BF02969382.

    [26]

    D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993.

    [27]

    K. S. Sibirskiĭ, On the number of limit cycles in the neighborhood of a singular point, (Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47.

    [28]

    S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.doi: 10.1007/BF03025291.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return