Citation: |
[1] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100 (1954), 1-19. |
[2] |
A. Buică, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 331 (2007), 443-454.doi: 10.1016/j.jmaa.2006.09.008. |
[3] |
M. Caubergh and F. Dumortier, Algebraic curves of maximal cyclicity, Math. Proc. Camb. Phil. Soc., 140 (2006), 47-70.doi: 10.1017/S0305004105008807. |
[4] |
M. Caubergh and A. Gasull, Absolute cyclicity, Lyapunov quantities and center conditions, J. Math. Anal. Appl., 366 (2010), 297-309.doi: 10.1016/j.jmaa.2010.01.010. |
[5] |
C. Chicone and M. Jacobs, Bifurcations of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326.doi: 10.1016/0022-0396(91)90142-V. |
[6] |
C. Christopher, Estimating limit cycle bifurcations from centers, in Trends in Mathematics: Differential equations with symbolic computation, Birkhäuser (2005), 23-35.doi: 10.1007/3-7643-7429-2_2. |
[7] |
F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differential Equations, 110 (1994), 86-133.doi: 10.1006/jdeq.1994.1061. |
[8] |
J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, in Actualités Mathématiques, Hermann, Paris, 1992. |
[9] |
A. Gasull and J. Giné, Cyclicity versus Center problem, Qual. Theory Dyn. Syst., 9 (2010), 101-113.doi: 10.1007/s12346-010-0022-9. |
[10] |
A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math., 31 (2001), 1277-1303.doi: 10.1216/rmjm/1021249441. |
[11] |
A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants, Comput. Appl. Math., 20 (2001), 149-177. |
[12] |
L. Gavrilov, Cyclicity of period annuli and principalization of Bautin ideals, Ergodic Theory Dynam. Systems, 28 (2008), 1497-1507.doi: 10.1017/S0143385707000971. |
[13] |
L. Gavrilov and D. Novikov, On the finite cyclicity of open period annuli, Duke Math. J., 152 (2010), 1-26.doi: 10.1215/00127094-2010-005. |
[14] |
J. Giné, The nondegenerate center problem and the inverse integrating factor, Bull. Sci. Math., 130 (2006), 152-161.doi: 10.1016/j.bulsci.2005.09.001. |
[15] |
D. Hilbert, Mathematical problems, Bull. Am. Math. Soc., 8 (1902), 437-479.doi: 10.1090/S0002-9904-1902-00923-3. |
[16] |
I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161.doi: 10.1016/S0007-4497(98)80080-8. |
[17] |
Yu. S. Il'yashenko, Finiteness theorems for limit cycles, in Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991. |
[18] |
Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, in Graduate Studies in Mathematics 86, American Mathematical Society, Providence, Rhode Island, 2008. |
[19] |
Jibin Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.doi: 10.1142/S0218127403006352. |
[20] |
P. Mardešić, M. Saavedra, M. Uribe and M. Wallace, Unfolding of the Hamiltonian triangle vector field, J. Dyn. Control Syst., 17 (2011), 291-310.doi: 10.1007/s10883-011-9120-5. |
[21] |
H. Poincaré, Méemoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. |
[22] |
G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, pp. 91-158 in Sur les espaces fibrés et les variétés feuilletées by W.-T. Wu, G. Reeb, Actualités Sci. Industr., 1183, Tome XI, Paris, Hermann et Cie, Éditeurs, Paris, 1952. |
[23] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser Boston, Inc., Boston, MA, 2009.doi: 10.1007/978-0-8176-4727-8. |
[24] |
R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics 164 Birkhäuser Verlag, Basel, 1998.doi: 10.1007/978-3-0348-8798-4. |
[25] |
R. Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst., 2 (2001), 67-78.doi: 10.1007/BF02969382. |
[26] |
D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, in Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), 429-467, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993. |
[27] |
K. S. Sibirskiĭ, On the number of limit cycles in the neighborhood of a singular point, (Russian) Differencial'nye Uravnenija, 1 (1965) 53-66. English translation: Differential Equations 1 (1965), 36-47. |
[28] |
S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.doi: 10.1007/BF03025291. |