# American Institute of Mathematical Sciences

January  2015, 14(1): 121-125. doi: 10.3934/cpaa.2015.14.121

## A counterexample to finite time stopping property for one-harmonic map flow

 1 Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914 2 Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Received  February 2014 Revised  April 2014 Published  September 2014

For a very strong diffusion equation like total variation flow it is often observed that the solution stops at a steady state in a finite time. This phenomenon is called a finite time stopping or a finite time extinction if the steady state is zero. Such a phenomenon is also observed in one-harmonic map flow from an interval to a unit circle when initial data is piecewise constant. However, if the target manifold is a unit two-dimensional sphere, the finite time stopping may not occur. An explicit example is given in this paper.
Citation: Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure & Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121
##### References:
 [1] F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some Qualitative properties for the total variation flow, Journal of Functional Analysis, 188 (2) (2002), 516-547. doi: 10.1006/jfan.2001.3829.  Google Scholar [2] F. Andreu-Vaillo, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, 223, Birkhäuser Basel, 2004. doi: 10.1007/978-3-0348-7928-6.  Google Scholar [3] J. W. Barrett, X. Feng and A. Prohl, On p-harmonic map heat flows for $1 \leq p<\infty$ and their finite element approximations, SIAM J. Math. Anal., 40 (2008), 1471-1498. doi: 10.1137/070680825.  Google Scholar [4] H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans Les Espaces de Hilbert, North-Holland, Amsterdam, 1973.  Google Scholar [5] R. Dal Passo, L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Calc. Var. PDEs, 32 (2008), 533-554. doi: 10.1007/s00526-007-0153-2.  Google Scholar [6] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar [7] X. Feng, Divergence-$L^q$ and divergence-measure tensor fields and gradient flows for linear growth functionals of maps into the unit sphere, Calc. Var. PDEs, 37 (2010), 111-139. doi: 10.1007/s00526-009-0255-0.  Google Scholar [8] L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values into $\mathbbS^1$, SIAM J. Math. Anal., 45 (2013), 1723-1740. doi: 10.1137/12088402X.  Google Scholar [9] L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values in a hyperoctant of the $N$-sphere, Analysis and PDEs, 7 (2014), 627-671. doi: 10.1016/j.aml.2013.05.016.  Google Scholar [10] L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic flows from $D^2$ to $S^2$: local well-posedness and finite time blowup, SIAM J. Math. Anal., 42 (2010), 2791-2817. doi: 10.1137/090764293.  Google Scholar [11] Y. Giga, Y. Kashima and N. Yamazaki, Local solvability of a constrained gradient system of total variation, Abstr. Appl. Anal., 8 (2004), 651-682. doi: 10.1155/S1085337504311048.  Google Scholar [12] Y. Giga and R. Kobayashi, On constrained equations with singular diffusivity, Methods Appl. Anal., 10 (2003), 253-277.  Google Scholar [13] Y. Giga and R. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Contin. Dyn. Syst., 30 (2011), 509-535. doi: 10.3934/dcds.2011.30.509.  Google Scholar [14] Y. Giga and H. Kuroda, On breakdown of solutions of a constrained gradient system of total variation, Bol. Soc. Parana. Mat., 22 (2004), 9-20. doi: 10.5269/bspm.v22i1.7491.  Google Scholar [15] Y. Giga, H. Kuroda and N. Yamazaki, An existence result for a discretized constrained gradient system of total variation flow in color image processing, Interdiscip. Inform. Sci., 11 (2005), 199-204. doi: 10.4036/iis.2005.199.  Google Scholar [16] Y. Giga, H. Kuroda and N. Yamazaki, Global solvability of constrained singular diffusion equation associated with essential variation, International Series of Numerical Mathematics, 154, Free Boundary Problems: Theory and Applications, Birkhäuser Verlag Basel (2007), 209-218. doi: 10.1007/978-3-7643-7719-9_21.  Google Scholar [17] R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Stat. Phys., 95 (1999), 1187-1220. doi: 10.1023/A:1004570921372.  Google Scholar [18] Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.  Google Scholar [19] B. Tang, G. Sapiro and V. Caselles, Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case, Int. J. Computer Vision, 36 (2000), 149-161. Google Scholar [20] B. Tang, G. Sapiro and V. Caselles, Color image enhancement via chromaticity diffusion, IEEE Transactions on Image Processing, 10 (2001), 701-707. Google Scholar

show all references

##### References:
 [1] F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some Qualitative properties for the total variation flow, Journal of Functional Analysis, 188 (2) (2002), 516-547. doi: 10.1006/jfan.2001.3829.  Google Scholar [2] F. Andreu-Vaillo, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, 223, Birkhäuser Basel, 2004. doi: 10.1007/978-3-0348-7928-6.  Google Scholar [3] J. W. Barrett, X. Feng and A. Prohl, On p-harmonic map heat flows for $1 \leq p<\infty$ and their finite element approximations, SIAM J. Math. Anal., 40 (2008), 1471-1498. doi: 10.1137/070680825.  Google Scholar [4] H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans Les Espaces de Hilbert, North-Holland, Amsterdam, 1973.  Google Scholar [5] R. Dal Passo, L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Calc. Var. PDEs, 32 (2008), 533-554. doi: 10.1007/s00526-007-0153-2.  Google Scholar [6] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar [7] X. Feng, Divergence-$L^q$ and divergence-measure tensor fields and gradient flows for linear growth functionals of maps into the unit sphere, Calc. Var. PDEs, 37 (2010), 111-139. doi: 10.1007/s00526-009-0255-0.  Google Scholar [8] L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values into $\mathbbS^1$, SIAM J. Math. Anal., 45 (2013), 1723-1740. doi: 10.1137/12088402X.  Google Scholar [9] L. Giacomelli, J. M. Mazón and S. Moll, The 1-harmonic flow with values in a hyperoctant of the $N$-sphere, Analysis and PDEs, 7 (2014), 627-671. doi: 10.1016/j.aml.2013.05.016.  Google Scholar [10] L. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic flows from $D^2$ to $S^2$: local well-posedness and finite time blowup, SIAM J. Math. Anal., 42 (2010), 2791-2817. doi: 10.1137/090764293.  Google Scholar [11] Y. Giga, Y. Kashima and N. Yamazaki, Local solvability of a constrained gradient system of total variation, Abstr. Appl. Anal., 8 (2004), 651-682. doi: 10.1155/S1085337504311048.  Google Scholar [12] Y. Giga and R. Kobayashi, On constrained equations with singular diffusivity, Methods Appl. Anal., 10 (2003), 253-277.  Google Scholar [13] Y. Giga and R. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Contin. Dyn. Syst., 30 (2011), 509-535. doi: 10.3934/dcds.2011.30.509.  Google Scholar [14] Y. Giga and H. Kuroda, On breakdown of solutions of a constrained gradient system of total variation, Bol. Soc. Parana. Mat., 22 (2004), 9-20. doi: 10.5269/bspm.v22i1.7491.  Google Scholar [15] Y. Giga, H. Kuroda and N. Yamazaki, An existence result for a discretized constrained gradient system of total variation flow in color image processing, Interdiscip. Inform. Sci., 11 (2005), 199-204. doi: 10.4036/iis.2005.199.  Google Scholar [16] Y. Giga, H. Kuroda and N. Yamazaki, Global solvability of constrained singular diffusion equation associated with essential variation, International Series of Numerical Mathematics, 154, Free Boundary Problems: Theory and Applications, Birkhäuser Verlag Basel (2007), 209-218. doi: 10.1007/978-3-7643-7719-9_21.  Google Scholar [17] R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Stat. Phys., 95 (1999), 1187-1220. doi: 10.1023/A:1004570921372.  Google Scholar [18] Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.  Google Scholar [19] B. Tang, G. Sapiro and V. Caselles, Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case, Int. J. Computer Vision, 36 (2000), 149-161. Google Scholar [20] B. Tang, G. Sapiro and V. Caselles, Color image enhancement via chromaticity diffusion, IEEE Transactions on Image Processing, 10 (2001), 701-707. Google Scholar
 [1] Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 [2] Yoshikazu Giga, Robert V. Kohn. Scale-invariant extinction time estimates for some singular diffusion equations. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 509-535. doi: 10.3934/dcds.2011.30.509 [3] Juan Dávila, Manuel Del Pino, Catalina Pesce, Juncheng Wei. Blow-up for the 3-dimensional axially symmetric harmonic map flow into $S^2$. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6913-6943. doi: 10.3934/dcds.2019237 [4] Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940 [5] Konstantinos Papafitsoros, Kristian Bredies. A study of the one dimensional total generalised variation regularisation problem. Inverse Problems & Imaging, 2015, 9 (2) : 511-550. doi: 10.3934/ipi.2015.9.511 [6] Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137 [7] Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066 [8] Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565 [9] Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete & Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021309 [10] Jesus Ildefonso Díaz, David Gómez-Castro, Jean Michel Rakotoson, Roger Temam. Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 509-546. doi: 10.3934/dcds.2018023 [11] Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265 [12] Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042 [13] Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43 [14] Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184 [15] Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 867-880. doi: 10.3934/dcdsb.2006.6.867 [16] Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191 [17] Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431 [18] Jeremy LeCrone, Yuanzhen Shao, Gieri Simonett. The surface diffusion and the Willmore flow for uniformly regular hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3503-3524. doi: 10.3934/dcdss.2020242 [19] Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357 [20] Víctor Almeida, Jorge J. Betancor. Variation and oscillation for harmonic operators in the inverse Gaussian setting. Communications on Pure & Applied Analysis, 2022, 21 (2) : 419-470. doi: 10.3934/cpaa.2021183

2020 Impact Factor: 1.916