Advanced Search
Article Contents
Article Contents

Remarks on the comparison principle for quasilinear PDE with no zeroth order terms

Abstract Related Papers Cited by
  • A comparison principle for viscosity solutions of second-order quasilinear elliptic partial di erential equations with no zeroth order terms is shown. A di erent transformation from that of Barles and Busca in [3] is adapted to enable us to deal with slightly more general equations.
    Mathematics Subject Classification: Primary: 49L25; Secondary: 35J70, 35J92.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.doi: 10.1090/S0273-0979-04-01035-3.


    M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math., 73 (1999), 276-285.doi: 10.1007/s000130050399.


    G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26 (2001), 2323-2337.doi: 10.1081/PDE-100107824.


    G. Barles, E. Rouy and P. E. Souganidis, Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations, Stochastic Analysis, Control, Optimization and Applications, Birkhäuser, Boston, (1999), 209-222.


    M. G. Crandall, A visit with the $\infty$-Laplace equation, Lecture Notes in Math., 1927, Springer, Berlin, (2008), 75-122.doi: 10.1007/978-3-540-75914-0_3.


    M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 277 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5.


    M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.doi: 10.2307/1999343.


    Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry, 33 (1991), 749-786.


    H. Ishii and S. Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games, Funkcial. Ekvac., 34 (1991), 143-155.


    R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Math., 101 (1988), 1-27.doi: 10.1007/BF00281780.


    R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.doi: 10.1007/BF00386368.


    P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear eqation, SIAM J. Math. Anal., 33 (2001), 699-717.doi: 10.1137/S0036141000372179.


    B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241-253.


    B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Comm. Partial Differential Equations, 32 (2007), 1209-1224.doi: 10.1080/03605300601113043.


    S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ memoir 13, Math. Soc. Japan, 2004.


    P. Lindqvist, Notes on the $p$-Laplace equation, Report. University of Jyväskylä, Department of Mathematics and Statics, 102, 2006.


    Y. Luo and A. Eberhard, Comparison principle for viscosity solutions of elliptic equations via fuzzy sum rule, J. Math. Anal. Appl., 307 (2005), 736-752.doi: 10.1016/j.jmaa.2005.01.055.


    R. T. Rockafellar, Convex Analysis, Princeton Math. Series, 28, Princeton University Press, 1970.


    N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions, Rev. Mat. Iberoamericana, 4 (1988), 453-468.doi: 10.4171/RMI/80.

  • 加载中

Article Metrics

HTML views() PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint