• Previous Article
    Modified wave operators without loss of regularity for some long range Hartree equations. II
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces
July  2015, 14(4): 1343-1355. doi: 10.3934/cpaa.2015.14.1343

On a system of semirelativistic equations in the energy space

1. 

Department of Pure and Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

2. 

Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan

3. 

Department of Applied Physics, Waseda University, Tokyo 169-8555

Received  June 2014 Revised  June 2014 Published  April 2015

Well-posedness of the Cauchy problem for a system of semirelativistic equations is shown in the energy space. Solutions are constructed as a limit of an approximate solutions. A Yudovitch type argument plays an important role for the convergence arguments.
Citation: Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. On a system of semirelativistic equations in the energy space. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1343-1355. doi: 10.3934/cpaa.2015.14.1343
References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys., 53 (2012), 062301, 19. doi: 10.1063/1.4726198.  Google Scholar

[2]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. doi: 10.1080/03605308008820154.  Google Scholar

[3]

R. Carles and T. Ozawa, Finite time extinction for nonlinear Schrödinger equation in 1D and 2D, Comm. Partial Differential Equation, 40 (2015), 897-917. doi: 10.1080/03605302.2014.967356.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, 2003.  Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074. doi: 10.1137/060653688.  Google Scholar

[6]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705. doi: 10.1002/cpa.20186.  Google Scholar

[7]

K. Fujiwara, S. Machihara and T. Ozawa, Well-posedness for the Cauchy problem of a system of semirelativistic equations,, \emph{Commun. Math. Phys.}, ().   Google Scholar

[8]

N. Hayashi, C. Li and P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations, 24 (2011), 417-434.  Google Scholar

[9]

N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426. doi: 10.7153/dea-03-26.  Google Scholar

[10]

N. Hayashi, T. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690. doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar

[11]

N. Hayashi and W. von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497. doi: 10.2969/jmsj/03930489.  Google Scholar

[12]

G. Hoshino and T. Ozawa, Analytic smoothing effect for a system of nonlinear Schr\"odinger equations, Differ. Equ. Appl., 5 (2013), 395-408. doi: 10.7153/dea-05-25.  Google Scholar

[13]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066.  Google Scholar

[14]

J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129. doi: 10.1007/s00205-013-0620-1.  Google Scholar

[15]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64. doi: 10.1007/s11040-007-9020-9.  Google Scholar

[16]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.  Google Scholar

[17]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal., 14 (1990), 765-769. doi: 10.1016/0362-546X(90)90104-O.  Google Scholar

[18]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. doi: 10.1016/0022-247X(91)90017-T.  Google Scholar

[19]

T. Ogawa and T. Yokota, Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain, Commun. Math. Phys., 245 (2004), 105-121. doi: 10.1007/s00220-003-1004-4.  Google Scholar

[20]

T. Ozawa and N. Visciglia, An improvement on the Brezis-Gallouet technique for 2D NLS and 1D half-wave equation,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, ().   Google Scholar

[21]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991), 527-542.  Google Scholar

[22]

M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783.  Google Scholar

show all references

References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys., 53 (2012), 062301, 19. doi: 10.1063/1.4726198.  Google Scholar

[2]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. doi: 10.1080/03605308008820154.  Google Scholar

[3]

R. Carles and T. Ozawa, Finite time extinction for nonlinear Schrödinger equation in 1D and 2D, Comm. Partial Differential Equation, 40 (2015), 897-917. doi: 10.1080/03605302.2014.967356.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, 2003.  Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074. doi: 10.1137/060653688.  Google Scholar

[6]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705. doi: 10.1002/cpa.20186.  Google Scholar

[7]

K. Fujiwara, S. Machihara and T. Ozawa, Well-posedness for the Cauchy problem of a system of semirelativistic equations,, \emph{Commun. Math. Phys.}, ().   Google Scholar

[8]

N. Hayashi, C. Li and P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations, 24 (2011), 417-434.  Google Scholar

[9]

N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426. doi: 10.7153/dea-03-26.  Google Scholar

[10]

N. Hayashi, T. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690. doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar

[11]

N. Hayashi and W. von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497. doi: 10.2969/jmsj/03930489.  Google Scholar

[12]

G. Hoshino and T. Ozawa, Analytic smoothing effect for a system of nonlinear Schr\"odinger equations, Differ. Equ. Appl., 5 (2013), 395-408. doi: 10.7153/dea-05-25.  Google Scholar

[13]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066.  Google Scholar

[14]

J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129. doi: 10.1007/s00205-013-0620-1.  Google Scholar

[15]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64. doi: 10.1007/s11040-007-9020-9.  Google Scholar

[16]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.  Google Scholar

[17]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal., 14 (1990), 765-769. doi: 10.1016/0362-546X(90)90104-O.  Google Scholar

[18]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. doi: 10.1016/0022-247X(91)90017-T.  Google Scholar

[19]

T. Ogawa and T. Yokota, Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain, Commun. Math. Phys., 245 (2004), 105-121. doi: 10.1007/s00220-003-1004-4.  Google Scholar

[20]

T. Ozawa and N. Visciglia, An improvement on the Brezis-Gallouet technique for 2D NLS and 1D half-wave equation,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, ().   Google Scholar

[21]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991), 527-542.  Google Scholar

[22]

M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783.  Google Scholar

[1]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[2]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[3]

Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147

[4]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[5]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[6]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[7]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[8]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[9]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[10]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[11]

Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations & Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035

[12]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[13]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[14]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[15]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[16]

Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033

[17]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[18]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[19]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[20]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]