Citation: |
[1] |
P. Brenner, On $L^p-L^q$ estimate of the wave equation, Math. Z., 145 (1975), 251-254. |
[2] |
Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates, Comm. Pure Appl. Anal., 10 (2011), 1121-1128.doi: 10.3934/cpaa.2011.10.1121. |
[3] |
J. Ginibre and G. Velo, Generalized Strichartz inequality for the wave equation, J. Funct. Anal., 133 (1995), 50-68.doi: 10.1006/jfan.1995.1119. |
[4] |
N. Hayashi, Global existence of small solutions to quadratic nonlinear Schrödinger equations, Commun. P.D.E., 18 (1993), 1109-1124.doi: 10.1080/03605309308820965. |
[5] |
N. Hayashi, S. Kobayashi and P. Naumkin, Global existence of solutions to nonlinear dispersive wave equations, Differential and Integral Equations, 25 (2012), 685-698. |
[6] |
N. Hayashi, C. Li and P. Naumkin, Non existence of asymptotically free solution of systems of nolinear Schrödinger equations, Electron. J. Diff. Equ., 162 (2012), 1-14. |
[7] |
K. Hidano and K. Tsutaya, Global existence and asymptotic behavior of solutions for nonlinear wave equations, Indiana Univ. Math. J., 44 (1995), 1273-1305.doi: 10.1512/iumj.1995.44.2028. |
[8] |
C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.doi: 10.1512/iumj.1991.40.40003. |
[9] |
S. Klainerman, The null condition and global existence to nonlinear wave equations, Lect. Appl. Math., 23 (1986), 293-326. |
[10] |
M. Nakamura, Remarks on Keel-Smith-Sogge estimates and some applications to nonlinear higher order wave equations, Differential and Integral Equations, 24 (2011), 519-540. |
[11] |
T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Analysis, T.M.A., 14 (1990), 765-769.doi: 10.1016/0362-546X(90)90104-O. |
[12] |
J-Q. Yao, Comportment à l'infini des solutions d'une équation de Schrödinger non linéaire dans un domaine extérier, C. R. Acad, Sci. Paris, 294 (1982), 163-166. |