Citation: |
[1] |
M. Di Flaviano, Lower bounds of the life span of classical solutions to a system of semilinear wave equations in two space dimensions, J. Math. Anal. Appl., 281 (2003), 22-45. |
[2] |
P. Godin, Long time behavior of solutions to some nonlinear invariant mixed problems, Comm. Partial Differential Equations, 14 (1989), 299-374.doi: 10.1080/03605308908820599. |
[3] |
P. Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems, Amer. J. Math., 117 (1995), 1475-1505.doi: 10.2307/2375027. |
[4] |
N. Hayashi, Global existence of small solutions to quadratic nonlinear wave equations in an exterior domain, J. Funct. Anal., 131 (1995), 302-344.doi: 10.1006/jfan.1995.1091. |
[5] |
F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.doi: 10.1007/BF01647974. |
[6] |
S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain, J. Math. Soc. Japan, 60 (2008), 1135-1170. |
[7] |
S. Katayama, H. Kubo, and S. Lucente, Almost global existence for exterior Neumann problems of semilinear wave equations in 2D, Commun. Pure Appl. Anal., 12 (2013), 2331-2360.doi: 10.3934/cpaa.2013.12.2331. |
[8] |
M. Keel, H. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains, J. Funct. Anal., 189 (2002), 155-226.doi: 10.1006/jfan.2001.3844. |
[9] |
M. Keel, H. Smith and C. D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc., 17 (2004), 109-153.doi: 10.1090/S0894-0347-03-00443-0. |
[10] |
S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.doi: 10.1002/cpa.3160380305. |
[11] |
H. Kubo and K. Kubota, Asymptotic behavior of classical solutions to a system of semilinier wave equations in low space dimensions, J. Math. Soc. Japan, 53 (2001), 875-912.doi: 10.2969/jmsj/05340875. |
[12] |
H. Kubo, Uniform decay estimates for the wave equation in an exterior domain, in Asymptotic analysis and singularities, 31-54, Advanced Studies in Pure Mathematics 47-1, Math. Soc. of Japan, 2007. |
[13] |
H. Kubo, Global existence for nonlinear wave equations in an exterior domain in 2D, Evolution Equations and Control Theory, 2 (2013), 319-335.doi: 10.3934/eect.2013.2.319. |
[14] |
H. Kubo, Almost global existence for nonlinear wave equations in an exterior domain in 2D, J. Differential Equations, 257 (2014), 2765-2800. ArXiv: 1204.3725v2.doi: 10.1016/j.jde.2014.05.048. |
[15] |
K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.doi: 10.14492/hokmj/1381413170. |
[16] |
J. Metcalfe, Global existence for semilinear wave equations exterior to nontrapping obstacles, Houston J. Math., 30 (2004), 259-281. |
[17] |
J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391-472. |
[18] |
J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75-117.doi: 10.1007/s00222-004-0383-2. |
[19] |
Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199.doi: 10.1007/BF01164023. |