\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation

Abstract Related Papers Cited by
  • This article is concerned with time global behavior of solutions to focusing mass-subcritical nonlinear Schrödinger equation of power type with data in a critical homogeneous weighted $L^2$ space. We give a sharp sufficient condition for scattering by proving existence of a threshold solution which does not scatter at least for one time direction and of which initial data attains minimum value of a norm of the weighted $L^2$ space in all initial value of non-scattering solution. Unlike in the mass-critical or -supercritical case, ground state is not a threshold. This is an extension of previous author's result to the case where the exponent of nonlinearity is below so-called Strauss number. A main new ingredient is a stability estimate in a Lorenz-modified-Bezov type spacetime norm.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35P25, 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.doi: 10.1215/21562261-2265914.

    [2]

    H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.

    [3]

    J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.doi: 10.1063/1.526074.

    [4]

    J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.

    [5]

    T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.

    [6]

    T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.

    [7]

    F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.doi: 10.1016/0022-1236(91)90103-C.

    [8]

    P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.doi: 10.2307/1990923.

    [9]

    B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, archived as arXiv1104:1114., 2011.

    [10]

    T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.doi: 10.4310/MRL.2008.v15.n6.a13.

    [11]

    D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.doi: 10.1007/s11425-011-4283-9.

    [12]

    G. Fibich, Singular solution of the subcritical nonlinear Schrödinger equation, Phys. D, 240 (2011), 1119-1122.doi: 10.1016/j.physd.2011.04.004.

    [13]

    D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.doi: 10.1142/S0219891605000361.

    [14]

    M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34 (1985), 777-799.doi: 10.1512/iumj.1985.34.34041.

    [15]

    P. Gerard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, in Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, École Polytech., Palaiseau, 1997, Exp. No. IV, 11.

    [16]

    J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239.

    [17]

    K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity, Funkcial. Ekvac., 51 (2008), 135-147.doi: 10.1619/fesi.51.135.

    [18]

    J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.doi: 10.1007/s00220-008-0529-y.

    [19]

    T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, vol. 23 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 1994, 223-238.

    [20]

    C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: 10.1007/s00222-006-0011-4.

    [21]

    C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405.

    [22]

    S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.doi: 10.1006/jdeq.2000.3951.

    [23]

    R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.doi: 10.1353/ajm.0.0107.

    [24]

    Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160.doi: 10.1016/j.jmaa.2010.06.019.

    [25]

    S. Masaki, On minimal non-scattering solution to focusing mass-subcritical nonlinear Schrödinger equation, archived as arXiv:1301.1742., 2013.

    [26]

    K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45.doi: 10.1007/s00526-011-0424-9.

    [27]

    K. Nakanishi, Asymptotically-free solutions for the short-range nonlinear Schrödinger equation, SIAM J. Math. Anal., 32 (2001), 1265-1271 (electronic).doi: 10.1137/S0036141000369083.

    [28]

    K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.doi: 10.1007/s00030-002-8118-9.

    [29]

    P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.doi: 10.1215/S0012-7094-87-05535-9.

    [30]

    W. A. Strauss, Nonlinear scattering theory, Scattering Theory in Mathematical Physics, J. A. Lavita and J-P. Marchand, eds. Reidel, Dordrecht, Holland-Boston, 53-78.

    [31]

    T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, No. 118, 28.

    [32]

    Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 321-347.

    [33]

    Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.

    [34]

    Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186-188.doi: 10.1090/S0273-0979-1984-15263-7.

    [35]

    L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878.doi: 10.2307/2047326.

    [36]

    M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136 (electronic).doi: 10.1090/S0002-9947-06-04099-2.

    [37]

    M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.doi: 10.1215/S0012-7094-07-13825-0.

    [38]

    M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return