Advanced Search
Article Contents
Article Contents

A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation

Abstract Related Papers Cited by
  • This article is concerned with time global behavior of solutions to focusing mass-subcritical nonlinear Schrödinger equation of power type with data in a critical homogeneous weighted $L^2$ space. We give a sharp sufficient condition for scattering by proving existence of a threshold solution which does not scatter at least for one time direction and of which initial data attains minimum value of a norm of the weighted $L^2$ space in all initial value of non-scattering solution. Unlike in the mass-critical or -supercritical case, ground state is not a threshold. This is an extension of previous author's result to the case where the exponent of nonlinearity is below so-called Strauss number. A main new ingredient is a stability estimate in a Lorenz-modified-Bezov type spacetime norm.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35P25, 35B44.


    \begin{equation} \\ \end{equation}
  • [1]

    T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.doi: 10.1215/21562261-2265914.


    H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.


    J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.doi: 10.1063/1.526074.


    J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.


    T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.


    T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.


    F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.doi: 10.1016/0022-1236(91)90103-C.


    P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.doi: 10.2307/1990923.


    B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, archived as arXiv1104:1114., 2011.


    T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.doi: 10.4310/MRL.2008.v15.n6.a13.


    D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.doi: 10.1007/s11425-011-4283-9.


    G. Fibich, Singular solution of the subcritical nonlinear Schrödinger equation, Phys. D, 240 (2011), 1119-1122.doi: 10.1016/j.physd.2011.04.004.


    D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.doi: 10.1142/S0219891605000361.


    M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34 (1985), 777-799.doi: 10.1512/iumj.1985.34.34041.


    P. Gerard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, in Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, École Polytech., Palaiseau, 1997, Exp. No. IV, 11.


    J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239.


    K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity, Funkcial. Ekvac., 51 (2008), 135-147.doi: 10.1619/fesi.51.135.


    J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.doi: 10.1007/s00220-008-0529-y.


    T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, vol. 23 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 1994, 223-238.


    C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: 10.1007/s00222-006-0011-4.


    C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405.


    S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.doi: 10.1006/jdeq.2000.3951.


    R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.doi: 10.1353/ajm.0.0107.


    Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160.doi: 10.1016/j.jmaa.2010.06.019.


    S. Masaki, On minimal non-scattering solution to focusing mass-subcritical nonlinear Schrödinger equation, archived as arXiv:1301.1742., 2013.


    K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45.doi: 10.1007/s00526-011-0424-9.


    K. Nakanishi, Asymptotically-free solutions for the short-range nonlinear Schrödinger equation, SIAM J. Math. Anal., 32 (2001), 1265-1271 (electronic).doi: 10.1137/S0036141000369083.


    K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.doi: 10.1007/s00030-002-8118-9.


    P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.doi: 10.1215/S0012-7094-87-05535-9.


    W. A. Strauss, Nonlinear scattering theory, Scattering Theory in Mathematical Physics, J. A. Lavita and J-P. Marchand, eds. Reidel, Dordrecht, Holland-Boston, 53-78.


    T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, No. 118, 28.


    Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 321-347.


    Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.


    Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186-188.doi: 10.1090/S0273-0979-1984-15263-7.


    L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878.doi: 10.2307/2047326.


    M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136 (electronic).doi: 10.1090/S0002-9947-06-04099-2.


    M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.doi: 10.1215/S0012-7094-07-13825-0.


    M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.

  • 加载中

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint