July  2015, 14(4): 1481-1531. doi: 10.3934/cpaa.2015.14.1481

A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation

1. 

Laboratory of Mathematics, Institute of Engineering, Hiroshima university, Higashihiroshima Hirhosima, 739-8527, Japan

Received  September 2013 Revised  May 2014 Published  April 2015

This article is concerned with time global behavior of solutions to focusing mass-subcritical nonlinear Schrödinger equation of power type with data in a critical homogeneous weighted $L^2$ space. We give a sharp sufficient condition for scattering by proving existence of a threshold solution which does not scatter at least for one time direction and of which initial data attains minimum value of a norm of the weighted $L^2$ space in all initial value of non-scattering solution. Unlike in the mass-critical or -supercritical case, ground state is not a threshold. This is an extension of previous author's result to the case where the exponent of nonlinearity is below so-called Strauss number. A main new ingredient is a stability estimate in a Lorenz-modified-Bezov type spacetime norm.
Citation: Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481
References:
[1]

T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672. doi: 10.1215/21562261-2265914.  Google Scholar

[2]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  Google Scholar

[3]

J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273. doi: 10.1063/1.526074.  Google Scholar

[4]

J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. Google Scholar

[6]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  Google Scholar

[7]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109. doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[8]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. doi: 10.2307/1990923.  Google Scholar

[9]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, archived as arXiv1104:1114., 2011. Google Scholar

[10]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250. doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[11]

D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062. doi: 10.1007/s11425-011-4283-9.  Google Scholar

[12]

G. Fibich, Singular solution of the subcritical nonlinear Schrödinger equation, Phys. D, 240 (2011), 1119-1122. doi: 10.1016/j.physd.2011.04.004.  Google Scholar

[13]

D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24. doi: 10.1142/S0219891605000361.  Google Scholar

[14]

M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34 (1985), 777-799. doi: 10.1512/iumj.1985.34.34041.  Google Scholar

[15]

P. Gerard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, in Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, École Polytech., Palaiseau, 1997, Exp. No. IV, 11.  Google Scholar

[16]

J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239.  Google Scholar

[17]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity, Funkcial. Ekvac., 51 (2008), 135-147. doi: 10.1619/fesi.51.135.  Google Scholar

[18]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467. doi: 10.1007/s00220-008-0529-y.  Google Scholar

[19]

T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, vol. 23 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 1994, 223-238.  Google Scholar

[20]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.  Google Scholar

[21]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.  Google Scholar

[22]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392. doi: 10.1006/jdeq.2000.3951.  Google Scholar

[23]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107.  Google Scholar

[24]

Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160. doi: 10.1016/j.jmaa.2010.06.019.  Google Scholar

[25]

S. Masaki, On minimal non-scattering solution to focusing mass-subcritical nonlinear Schrödinger equation, archived as arXiv:1301.1742., 2013. Google Scholar

[26]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45. doi: 10.1007/s00526-011-0424-9.  Google Scholar

[27]

K. Nakanishi, Asymptotically-free solutions for the short-range nonlinear Schrödinger equation, SIAM J. Math. Anal., 32 (2001), 1265-1271 (electronic). doi: 10.1137/S0036141000369083.  Google Scholar

[28]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68. doi: 10.1007/s00030-002-8118-9.  Google Scholar

[29]

P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715. doi: 10.1215/S0012-7094-87-05535-9.  Google Scholar

[30]

W. A. Strauss, Nonlinear scattering theory,, \emph{Scattering Theory in Mathematical Physics, (): 53.   Google Scholar

[31]

T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions,, \emph{Electron. J. Differential Equations}, ().   Google Scholar

[32]

Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 321-347.  Google Scholar

[33]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.  Google Scholar

[34]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186-188. doi: 10.1090/S0273-0979-1984-15263-7.  Google Scholar

[35]

L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878. doi: 10.2307/2047326.  Google Scholar

[36]

M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136 (electronic). doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[37]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar

[38]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567.   Google Scholar

show all references

References:
[1]

T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672. doi: 10.1215/21562261-2265914.  Google Scholar

[2]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  Google Scholar

[3]

J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273. doi: 10.1063/1.526074.  Google Scholar

[4]

J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. Google Scholar

[6]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  Google Scholar

[7]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109. doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[8]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. doi: 10.2307/1990923.  Google Scholar

[9]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, archived as arXiv1104:1114., 2011. Google Scholar

[10]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250. doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[11]

D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062. doi: 10.1007/s11425-011-4283-9.  Google Scholar

[12]

G. Fibich, Singular solution of the subcritical nonlinear Schrödinger equation, Phys. D, 240 (2011), 1119-1122. doi: 10.1016/j.physd.2011.04.004.  Google Scholar

[13]

D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24. doi: 10.1142/S0219891605000361.  Google Scholar

[14]

M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34 (1985), 777-799. doi: 10.1512/iumj.1985.34.34041.  Google Scholar

[15]

P. Gerard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, in Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, École Polytech., Palaiseau, 1997, Exp. No. IV, 11.  Google Scholar

[16]

J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239.  Google Scholar

[17]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity, Funkcial. Ekvac., 51 (2008), 135-147. doi: 10.1619/fesi.51.135.  Google Scholar

[18]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467. doi: 10.1007/s00220-008-0529-y.  Google Scholar

[19]

T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, vol. 23 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 1994, 223-238.  Google Scholar

[20]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.  Google Scholar

[21]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.  Google Scholar

[22]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392. doi: 10.1006/jdeq.2000.3951.  Google Scholar

[23]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107.  Google Scholar

[24]

Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160. doi: 10.1016/j.jmaa.2010.06.019.  Google Scholar

[25]

S. Masaki, On minimal non-scattering solution to focusing mass-subcritical nonlinear Schrödinger equation, archived as arXiv:1301.1742., 2013. Google Scholar

[26]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45. doi: 10.1007/s00526-011-0424-9.  Google Scholar

[27]

K. Nakanishi, Asymptotically-free solutions for the short-range nonlinear Schrödinger equation, SIAM J. Math. Anal., 32 (2001), 1265-1271 (electronic). doi: 10.1137/S0036141000369083.  Google Scholar

[28]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68. doi: 10.1007/s00030-002-8118-9.  Google Scholar

[29]

P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715. doi: 10.1215/S0012-7094-87-05535-9.  Google Scholar

[30]

W. A. Strauss, Nonlinear scattering theory,, \emph{Scattering Theory in Mathematical Physics, (): 53.   Google Scholar

[31]

T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions,, \emph{Electron. J. Differential Equations}, ().   Google Scholar

[32]

Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 321-347.  Google Scholar

[33]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.  Google Scholar

[34]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186-188. doi: 10.1090/S0273-0979-1984-15263-7.  Google Scholar

[35]

L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878. doi: 10.2307/2047326.  Google Scholar

[36]

M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136 (electronic). doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[37]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar

[38]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567.   Google Scholar

[1]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[2]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[3]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[6]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[9]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[10]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[11]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[12]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[13]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[14]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[15]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[16]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[17]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[18]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[19]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[20]

Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure & Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]