Citation: |
[1] |
T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.doi: 10.1215/21562261-2265914. |
[2] |
H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. |
[3] |
J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.doi: 10.1063/1.526074. |
[4] |
J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223. |
[5] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. |
[6] |
T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100. |
[7] |
F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.doi: 10.1016/0022-1236(91)90103-C. |
[8] |
P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.doi: 10.2307/1990923. |
[9] |
B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, archived as arXiv1104:1114., 2011. |
[10] |
T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.doi: 10.4310/MRL.2008.v15.n6.a13. |
[11] |
D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.doi: 10.1007/s11425-011-4283-9. |
[12] |
G. Fibich, Singular solution of the subcritical nonlinear Schrödinger equation, Phys. D, 240 (2011), 1119-1122.doi: 10.1016/j.physd.2011.04.004. |
[13] |
D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.doi: 10.1142/S0219891605000361. |
[14] |
M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34 (1985), 777-799.doi: 10.1512/iumj.1985.34.34041. |
[15] |
P. Gerard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, in Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, École Polytech., Palaiseau, 1997, Exp. No. IV, 11. |
[16] |
J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239. |
[17] |
K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity, Funkcial. Ekvac., 51 (2008), 135-147.doi: 10.1619/fesi.51.135. |
[18] |
J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.doi: 10.1007/s00220-008-0529-y. |
[19] |
T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, vol. 23 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 1994, 223-238. |
[20] |
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: 10.1007/s00222-006-0011-4. |
[21] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405. |
[22] |
S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.doi: 10.1006/jdeq.2000.3951. |
[23] |
R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.doi: 10.1353/ajm.0.0107. |
[24] |
Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160.doi: 10.1016/j.jmaa.2010.06.019. |
[25] |
S. Masaki, On minimal non-scattering solution to focusing mass-subcritical nonlinear Schrödinger equation, archived as arXiv:1301.1742., 2013. |
[26] |
K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45.doi: 10.1007/s00526-011-0424-9. |
[27] |
K. Nakanishi, Asymptotically-free solutions for the short-range nonlinear Schrödinger equation, SIAM J. Math. Anal., 32 (2001), 1265-1271 (electronic).doi: 10.1137/S0036141000369083. |
[28] |
K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.doi: 10.1007/s00030-002-8118-9. |
[29] |
P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.doi: 10.1215/S0012-7094-87-05535-9. |
[30] |
W. A. Strauss, Nonlinear scattering theory, Scattering Theory in Mathematical Physics, J. A. Lavita and J-P. Marchand, eds. Reidel, Dordrecht, Holland-Boston, 53-78. |
[31] |
T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, No. 118, 28. |
[32] |
Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 321-347. |
[33] |
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. |
[34] |
Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186-188.doi: 10.1090/S0273-0979-1984-15263-7. |
[35] |
L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878.doi: 10.2307/2047326. |
[36] |
M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136 (electronic).doi: 10.1090/S0002-9947-06-04099-2. |
[37] |
M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.doi: 10.1215/S0012-7094-07-13825-0. |
[38] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576. |