Advanced Search
Article Contents
Article Contents

Remarks on the full dispersion Davey-Stewartson systems

Abstract Related Papers Cited by
  • We consider the Cauchy problem for the Full Dispersion Davey-Stewartson systems derived in [23] for the modeling of surface water waves in the modulation regime and we investigate some of their mathematical properties, emphasizing in particular the differences with the classical Davey-Stewartson systems.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 76B15, 76B45.


    \begin{equation} \\ \end{equation}
  • [1]

    M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991.doi: 10.1017/CBO9780511623998.


    M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.doi: 10.1017/S0022112079000835.


    D. J. Benney and G. J. Roskes, Waves instabilities, Stud. Appl. Math., 48 (1969), 377-385.


    C. Besse and C. H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up, Mathematical Models and Methods in Applied Sciences, 8 (1998), 1363-1386.doi: 10.1142/S0218202598000640.


    T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson system for quadratic hyperbolic systems, Asymptotic Analysis, 31 (2002), 69-91.


    W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997), 615-667.doi: 10.1016/S0294-1449(97)80128-X.


    W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5 (1992), 497-522.


    W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys., 108 (1993), 73-83.doi: 10.1006/jcph.1993.1164.


    A. Davey and K. Stewartson, One three-dimensional packets of water waves, Proc. Roy. Soc. Lond. A, 338 (1974), 101-110.


    V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 79 (1977), 703-714.


    J.-M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506.


    J.-M. Ghidaglia and J.-C. Saut, Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations, J. Nonlinear Sci., 6 (1996), 139-145.doi: 10.1007/s003329900006.


    J.-M. Ghidaglia and J.-C. Saut, On the Zakharov-Schulman equations, in Nonlinear Dispersive Waves (L. Debnath Ed.), World Scientific, 1992, 83-97.


    Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct. Analysis, 254 (2008), 1642-1660.doi: 10.1016/j.jfa.2007.12.010.


    Z. Guo and Y. Wang 2, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, arXiv:1007.4299v3. doi: 10.1007/s11854-014-0025-6.


    N. Hayashi and H. Hirata, Local existence in time of small solutions to the elliptic- hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc., 40 (1997), 563-581.doi: 10.1017/S0013091500024020.


    N. Hayashi and H. Hirata, Global existence and scattering of small solutions to the elliptic-hyperbolic Davey-Stewartson system, Nonlinearity, 9 (1996), 1387-1409.doi: 10.1088/0951-7715/9/6/001.


    A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, arXiv:1209.4943v1.


    C. Klein, B. Muite and K. Roidot, Numerical study of the blow-up in the Davey-Stewartson system, Discr. Cont. Dyn. Syst. B, 18 (2013), 1361-1387.doi: 10.3934/dcdsb.2013.18.1361.


    C. Klein and J.-C. Saut, A numerical approach to blow-up issues for Davey-Stewartson II type systems, submitted.


    C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, submitted.


    Joseph Louis de Lagrange, Mémoire sur la théorie du mouvement des fluides, Oeuvres complètes, tome 4, 695-748. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 1781.


    D. Lannes, Water Waves : Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol 188 (2013), AMS, Providence.doi: 10.1090/surv/188.


    David Lannes, A stability criterion for two-dimensional interfaces and applications, Arch. Ration. Mech. Anal., 208 (2013), 481-567.doi: 10.1007/s00205-012-0604-6.


    D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equation, Kinematics and Related Models, 6 (2013).doi: 10.3934/krm.2013.6.989.


    F. Linares and G. Ponce, On the Davey-Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 523-548.


    C. Obrecht, In preparation. $\ $


    C. Obrecht and K. Roidot, In preparation. $\ $


    T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems, Proc. Roy. Soc. London A, 436 (1992), 345-349.doi: 10.1098/rspa.1992.0022.


    G. C. Papanicolaou, C. Sulem, P.-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Physica D, 72 (1994), 61-86.doi: 10.1016/0167-2789(94)90167-8.


    P. A. Perry, Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in $H^{1,1}(\R^2)$, arXiv:1110.5589v2.


    G. Ponce and J.-C. Saut, Well-posedness for the Benney-Roskes-Zakharov- Rubenchik system, Discrete Cont. Dynamical Systems, 13 (2005), 811-825.doi: 10.3934/dcds.2005.13.811.


    C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, Applied Mathematical Sciences 139, New York, Berlin 1999.


    L. Y. Sung, Long time decay of the solutions of the Davey-Stewartson II equations, J. Nonlinear Sci., 5 (1995), 43-452.doi: 10.1007/BF01212909.


    N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Comm. Math. Phys., 335 (2015), 369-443.doi: 10.1007/s00220-014-2259-7.


    N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., 310 (2012), 817-883.doi: 10.1007/s00220-012-1422-2.


    V. E. Zakharov, Weakly nonlinear waves on surface of ideal finite depth fluid, Amer. Math. Soc. Transl. Ser. 2, 182 (1998), 167-197.


    V. E. Zakharov and A. M. Rubenchik, Nonlinear interaction of high-frequency and low frequency waves, Prikl. Mat. Techn. Phys., (1972), 84-98.


    V. E. Zakharov and E. I Schulman, Degenerate conservation laws, motion invariants and kinetic equations, Physica, 1D (1980), 192-202.doi: 10.1016/0167-2789(80)90011-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint