• Previous Article
    Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data
  • CPAA Home
  • This Issue
  • Next Article
    Remarks on global solutions of dissipative wave equations with exponential nonlinear terms
July  2015, 14(4): 1547-1561. doi: 10.3934/cpaa.2015.14.1547

Remarks on the full dispersion Davey-Stewartson systems

1. 

Laboratoire de Mathématiques, Université Paris-Sud, Bât. 430, 91405 Orsay Cedex, France

2. 

UMR de Mathématiques, Université de Paris-Sud, Bâtiment 425, P.O. Box 91405, Orsay

Received  October 2013 Revised  May 2014 Published  April 2015

We consider the Cauchy problem for the Full Dispersion Davey-Stewartson systems derived in [23] for the modeling of surface water waves in the modulation regime and we investigate some of their mathematical properties, emphasizing in particular the differences with the classical Davey-Stewartson systems.
Citation: Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715. doi: 10.1017/S0022112079000835.  Google Scholar

[3]

D. J. Benney and G. J. Roskes, Waves instabilities, Stud. Appl. Math., 48 (1969), 377-385. Google Scholar

[4]

C. Besse and C. H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up, Mathematical Models and Methods in Applied Sciences, 8 (1998), 1363-1386. doi: 10.1142/S0218202598000640.  Google Scholar

[5]

T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson system for quadratic hyperbolic systems, Asymptotic Analysis, 31 (2002), 69-91.  Google Scholar

[6]

W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997), 615-667. doi: 10.1016/S0294-1449(97)80128-X.  Google Scholar

[7]

W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5 (1992), 497-522.  Google Scholar

[8]

W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys., 108 (1993), 73-83. doi: 10.1006/jcph.1993.1164.  Google Scholar

[9]

A. Davey and K. Stewartson, One three-dimensional packets of water waves, Proc. Roy. Soc. Lond. A, 338 (1974), 101-110.  Google Scholar

[10]

V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 79 (1977), 703-714.  Google Scholar

[11]

J.-M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506.  Google Scholar

[12]

J.-M. Ghidaglia and J.-C. Saut, Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations, J. Nonlinear Sci., 6 (1996), 139-145. doi: 10.1007/s003329900006.  Google Scholar

[13]

J.-M. Ghidaglia and J.-C. Saut, On the Zakharov-Schulman equations, in Nonlinear Dispersive Waves (L. Debnath Ed.), World Scientific, 1992, 83-97.  Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct. Analysis, 254 (2008), 1642-1660. doi: 10.1016/j.jfa.2007.12.010.  Google Scholar

[15]

Z. Guo and Y. Wang 2, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, arXiv:1007.4299v3., ().  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[16]

N. Hayashi and H. Hirata, Local existence in time of small solutions to the elliptic- hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc., 40 (1997), 563-581. doi: 10.1017/S0013091500024020.  Google Scholar

[17]

N. Hayashi and H. Hirata, Global existence and scattering of small solutions to the elliptic-hyperbolic Davey-Stewartson system, Nonlinearity, 9 (1996), 1387-1409. doi: 10.1088/0951-7715/9/6/001.  Google Scholar

[18]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension,, arXiv:1209.4943v1., ().   Google Scholar

[19]

C. Klein, B. Muite and K. Roidot, Numerical study of the blow-up in the Davey-Stewartson system, Discr. Cont. Dyn. Syst. B, 18 (2013), 1361-1387. doi: 10.3934/dcdsb.2013.18.1361.  Google Scholar

[20]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for Davey-Stewartson II type systems,, submitted., ().   Google Scholar

[21]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations,, submitted., ().   Google Scholar

[22]

Joseph Louis de Lagrange, Mémoire sur la théorie du mouvement des fluides, Oeuvres complètes, tome 4, 695-748. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 1781. Google Scholar

[23]

D. Lannes, Water Waves : Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol 188 (2013), AMS, Providence. doi: 10.1090/surv/188.  Google Scholar

[24]

David Lannes, A stability criterion for two-dimensional interfaces and applications, Arch. Ration. Mech. Anal., 208 (2013), 481-567. doi: 10.1007/s00205-012-0604-6.  Google Scholar

[25]

D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equation, Kinematics and Related Models, 6 (2013). doi: 10.3934/krm.2013.6.989.  Google Scholar

[26]

F. Linares and G. Ponce, On the Davey-Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 523-548.  Google Scholar

[27]

C. Obrecht, In preparation., $\ $, ().   Google Scholar

[28]

C. Obrecht and K. Roidot, In preparation., $\ $, ().   Google Scholar

[29]

T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems, Proc. Roy. Soc. London A, 436 (1992), 345-349. doi: 10.1098/rspa.1992.0022.  Google Scholar

[30]

G. C. Papanicolaou, C. Sulem, P.-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Physica D, 72 (1994), 61-86. doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[31]

P. A. Perry, Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in $H^{1,1}(\R^2)$,, arXiv:1110.5589v2., ().   Google Scholar

[32]

G. Ponce and J.-C. Saut, Well-posedness for the Benney-Roskes-Zakharov- Rubenchik system, Discrete Cont. Dynamical Systems, 13 (2005), 811-825. doi: 10.3934/dcds.2005.13.811.  Google Scholar

[33]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, Applied Mathematical Sciences 139, New York, Berlin 1999. Google Scholar

[34]

L. Y. Sung, Long time decay of the solutions of the Davey-Stewartson II equations, J. Nonlinear Sci., 5 (1995), 43-452. doi: 10.1007/BF01212909.  Google Scholar

[35]

N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Comm. Math. Phys., 335 (2015), 369-443. doi: 10.1007/s00220-014-2259-7.  Google Scholar

[36]

N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., 310 (2012), 817-883. doi: 10.1007/s00220-012-1422-2.  Google Scholar

[37]

V. E. Zakharov, Weakly nonlinear waves on surface of ideal finite depth fluid, Amer. Math. Soc. Transl. Ser. 2, 182 (1998), 167-197.  Google Scholar

[38]

V. E. Zakharov and A. M. Rubenchik, Nonlinear interaction of high-frequency and low frequency waves, Prikl. Mat. Techn. Phys., (1972), 84-98. Google Scholar

[39]

V. E. Zakharov and E. I Schulman, Degenerate conservation laws, motion invariants and kinetic equations, Physica, 1D (1980), 192-202. doi: 10.1016/0167-2789(80)90011-1.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715. doi: 10.1017/S0022112079000835.  Google Scholar

[3]

D. J. Benney and G. J. Roskes, Waves instabilities, Stud. Appl. Math., 48 (1969), 377-385. Google Scholar

[4]

C. Besse and C. H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up, Mathematical Models and Methods in Applied Sciences, 8 (1998), 1363-1386. doi: 10.1142/S0218202598000640.  Google Scholar

[5]

T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson system for quadratic hyperbolic systems, Asymptotic Analysis, 31 (2002), 69-91.  Google Scholar

[6]

W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997), 615-667. doi: 10.1016/S0294-1449(97)80128-X.  Google Scholar

[7]

W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5 (1992), 497-522.  Google Scholar

[8]

W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys., 108 (1993), 73-83. doi: 10.1006/jcph.1993.1164.  Google Scholar

[9]

A. Davey and K. Stewartson, One three-dimensional packets of water waves, Proc. Roy. Soc. Lond. A, 338 (1974), 101-110.  Google Scholar

[10]

V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 79 (1977), 703-714.  Google Scholar

[11]

J.-M. Ghidaglia and J.-C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506.  Google Scholar

[12]

J.-M. Ghidaglia and J.-C. Saut, Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations, J. Nonlinear Sci., 6 (1996), 139-145. doi: 10.1007/s003329900006.  Google Scholar

[13]

J.-M. Ghidaglia and J.-C. Saut, On the Zakharov-Schulman equations, in Nonlinear Dispersive Waves (L. Debnath Ed.), World Scientific, 1992, 83-97.  Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct. Analysis, 254 (2008), 1642-1660. doi: 10.1016/j.jfa.2007.12.010.  Google Scholar

[15]

Z. Guo and Y. Wang 2, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, arXiv:1007.4299v3., ().  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[16]

N. Hayashi and H. Hirata, Local existence in time of small solutions to the elliptic- hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc., 40 (1997), 563-581. doi: 10.1017/S0013091500024020.  Google Scholar

[17]

N. Hayashi and H. Hirata, Global existence and scattering of small solutions to the elliptic-hyperbolic Davey-Stewartson system, Nonlinearity, 9 (1996), 1387-1409. doi: 10.1088/0951-7715/9/6/001.  Google Scholar

[18]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension,, arXiv:1209.4943v1., ().   Google Scholar

[19]

C. Klein, B. Muite and K. Roidot, Numerical study of the blow-up in the Davey-Stewartson system, Discr. Cont. Dyn. Syst. B, 18 (2013), 1361-1387. doi: 10.3934/dcdsb.2013.18.1361.  Google Scholar

[20]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for Davey-Stewartson II type systems,, submitted., ().   Google Scholar

[21]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations,, submitted., ().   Google Scholar

[22]

Joseph Louis de Lagrange, Mémoire sur la théorie du mouvement des fluides, Oeuvres complètes, tome 4, 695-748. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 1781. Google Scholar

[23]

D. Lannes, Water Waves : Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol 188 (2013), AMS, Providence. doi: 10.1090/surv/188.  Google Scholar

[24]

David Lannes, A stability criterion for two-dimensional interfaces and applications, Arch. Ration. Mech. Anal., 208 (2013), 481-567. doi: 10.1007/s00205-012-0604-6.  Google Scholar

[25]

D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equation, Kinematics and Related Models, 6 (2013). doi: 10.3934/krm.2013.6.989.  Google Scholar

[26]

F. Linares and G. Ponce, On the Davey-Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 523-548.  Google Scholar

[27]

C. Obrecht, In preparation., $\ $, ().   Google Scholar

[28]

C. Obrecht and K. Roidot, In preparation., $\ $, ().   Google Scholar

[29]

T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems, Proc. Roy. Soc. London A, 436 (1992), 345-349. doi: 10.1098/rspa.1992.0022.  Google Scholar

[30]

G. C. Papanicolaou, C. Sulem, P.-L. Sulem and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Physica D, 72 (1994), 61-86. doi: 10.1016/0167-2789(94)90167-8.  Google Scholar

[31]

P. A. Perry, Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in $H^{1,1}(\R^2)$,, arXiv:1110.5589v2., ().   Google Scholar

[32]

G. Ponce and J.-C. Saut, Well-posedness for the Benney-Roskes-Zakharov- Rubenchik system, Discrete Cont. Dynamical Systems, 13 (2005), 811-825. doi: 10.3934/dcds.2005.13.811.  Google Scholar

[33]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, Applied Mathematical Sciences 139, New York, Berlin 1999. Google Scholar

[34]

L. Y. Sung, Long time decay of the solutions of the Davey-Stewartson II equations, J. Nonlinear Sci., 5 (1995), 43-452. doi: 10.1007/BF01212909.  Google Scholar

[35]

N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Comm. Math. Phys., 335 (2015), 369-443. doi: 10.1007/s00220-014-2259-7.  Google Scholar

[36]

N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., 310 (2012), 817-883. doi: 10.1007/s00220-012-1422-2.  Google Scholar

[37]

V. E. Zakharov, Weakly nonlinear waves on surface of ideal finite depth fluid, Amer. Math. Soc. Transl. Ser. 2, 182 (1998), 167-197.  Google Scholar

[38]

V. E. Zakharov and A. M. Rubenchik, Nonlinear interaction of high-frequency and low frequency waves, Prikl. Mat. Techn. Phys., (1972), 84-98. Google Scholar

[39]

V. E. Zakharov and E. I Schulman, Degenerate conservation laws, motion invariants and kinetic equations, Physica, 1D (1980), 192-202. doi: 10.1016/0167-2789(80)90011-1.  Google Scholar

[1]

Christian Klein, Benson Muite, Kristelle Roidot. Numerical study of blow-up in the Davey-Stewartson system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1361-1387. doi: 10.3934/dcdsb.2013.18.1361

[2]

Jing Lu, Yifei Wu. Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1641-1670. doi: 10.3934/cpaa.2015.14.1641

[3]

Olivier Goubet, Manal Hussein. Global attractor for the Davey-Stewartson system on $\mathbb R^2$. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1555-1575. doi: 10.3934/cpaa.2009.8.1555

[4]

T. Colin, D. Lannes. Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : 83-100. doi: 10.3934/dcds.2004.11.83

[5]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[6]

Zaihui Gan, Boling Guo, Jian Zhang. Sharp threshold of global existence for the generalized Davey-Stewartson system in $R^2$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 913-922. doi: 10.3934/cpaa.2009.8.913

[7]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[8]

Christian Klein, Jean-Claude Saut. A numerical approach to Blow-up issues for Davey-Stewartson II systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1443-1467. doi: 10.3934/cpaa.2015.14.1443

[9]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[10]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[11]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[12]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[13]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[14]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[15]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[16]

Bilal Al Taki. Global well posedness for the ghost effect system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 345-368. doi: 10.3934/cpaa.2017017

[17]

Jiang Xu. Well-posedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1073-1092. doi: 10.3934/cpaa.2009.8.1073

[18]

David Lannes, Jean-Claude Saut. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinetic & Related Models, 2013, 6 (4) : 989-1009. doi: 10.3934/krm.2013.6.989

[19]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[20]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]