Citation: |
[1] |
D. Bucur and J. P. Zolésio, Free boundary problems and density perimeter, J. Differential Equations, 126 (1996), 224-243.doi: 10.1006/jdeq.1996.0050. |
[2] |
Y. Chu, W. Ma and X. Liu, Long-time behaviour of solutions to the compressible liquid crystals, Sci. Sin. Math., 42 (2012), 107-118. |
[3] |
S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystal in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.doi: 10.3934/dcdsb.2011.15.357. |
[4] |
J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34. |
[5] |
J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9 (1962), 371-378. |
[6] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. |
[7] |
E. Feireisl, Shape optimization in viscous compressible fluids, Appl. Math. Optim., 47 (2003), 59-78.doi: 10.1007/s00245-002-0737-3. |
[8] |
F. C. Frank, On the theory of liquid crystals, Discussions Faraday Soc., 25 (1958), 19-28. |
[9] |
P. G. de Gennes, The Physics of Liquid Crystals, Oxford University Press, London and New York, 1974. |
[10] |
D. Hoff, Strong convergence to global solutions for multidimensonal flows of compressible, isothermal flow with large, discontinuous initial data, Arch. Rational Mech. Anal., 132 (1995), 1-14.doi: 10.1007/BF00390346. |
[11] |
M. Hong, J. Li and Z. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in $\mathbb R^3$, Comm. Partial Differential Equations, 39 (2014), 1284-1328.doi: 10.1080/03605302.2013.871026. |
[12] |
M. Hong, Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbb R^2,$ Adv. Math., 231 (2012), 1364-1400. |
[13] |
T. Huang, C. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.doi: 10.1016/j.jde.2011.07.036. |
[14] |
T. Huang, C. Y. Wang and H. Y. Wen, Blow up criteridon for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204 (2012), 285-311. |
[15] |
S. Kaur, S. P. Singh and A. M. Biradar, Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals, Appl. Phys. Lett., 91 (2007), 023120; doi: 10.1063/1.2756136.91: 023120 |
[16] |
B. Kawohl, O. Pironneau, L. Tartar and J. P. Zolésio, Optimal Shape Design, Lecture Notes in Mathematics 1740, Springer-Verlag, Berlin, 2000.doi: 10.1007/BFb0106739. |
[17] |
F. M. Leslie, Some constitutive equations for anisotropic fluids, Quart. J. Mech. Appl. Math., 19 (1966), 357-370. |
[18] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810. |
[19] |
F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure. Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605. |
[20] |
F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503. |
[21] |
F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete and Continuous Dynamic Systems, 2 (1996), 1-23. |
[22] |
F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.doi: 10.1007/s002050000102. |
[23] |
F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals, Journal of Partial Differential Equations, 14 (2001), 289-330. |
[24] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 1. Incmpressible models. Oxford Science Publication, Oxford, 1996. |
[25] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible models. Oxford Science Publication, Oxford, 1998. |
[26] |
X. Liu, L. Liu and Y. Hao, Existence of strong solutions for the compressible Ericksen-Leslie model, http://arxiv.org/abs/1106.6140 |
[27] |
L. Liu and X. Liu, A blow-up ctiterion of strong solutions to the compressible liquid crystals system, Chinese Journal of Contemporary Mathematics, 32 (2011), 211-224. |
[28] |
X. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system, Discrete and Continuous Dynamical System A, 33 (2013), 757-788.doi: 10.3934/dcds.2013.33.757. |
[29] |
X. Liu and Z. Zhang, Global existence of weak solutions for the incompressible liquid crystals, Chinese Ann. Math. Ser. A, 30 (2009), 1-20. |
[30] |
W. Ma, H. Gong, J. Li, Global strong solutions to incompressible Ericksen-Leslie system in $\mathbb R^3$, Nonlinear Anal., 109 (2014), 230-235. |
[31] |
W. Ma and X. Liu, The boundedness of energy for the compressible liqud crystals system, Chinese Ann. Math. Ser. A, 32 (2011), 1-10. |
[32] |
W. C. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), 883-899. |
[33] |
D. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Rational Mech. Anal., 204 (2012), 881-915.doi: 10.1007/s00205-011-0488-x. |