\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds

Abstract Related Papers Cited by
  • We investigate the uniqueness of nonnegative solutions to the following differential inequality \begin{eqnarray} div(A(x)|\nabla u|^{m-2}\nabla u)+V(x)u^{\sigma_1}|\nabla u|^{\sigma_2}\leq0, \tag{1} \end{eqnarray} on a noncompact complete Riemannian manifold, where $A, V$ are positive measurable functions, $m>1$, and $\sigma_1$, $\sigma_2\geq0$ are parameters such that $\sigma_1+\sigma_2>m-1$.
    Our purpose is to establish the uniqueness of nonnegative solution to (1) via very natural geometric assumption on volume growth.
    Mathematics Subject Classification: 35J70, 58J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Y. Cheng and S.-T Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 333-354.

    [2]

    G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville Theorems for some nonlinear inequalities, Proc. Steklov Inst. Math., 260 (2008), 90-111.doi: 10.1134/S0081543808010070.

    [3]

    G. Caristi, E. Mitidieri and Pokhozhaev, Some Liouville theorems for quasilinear elliptic inequalities, Doklady Math., 79 (2009), 118-124.doi: 10.1134/S1064562409010360.

    [4]

    R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.doi: 10.1016/j.na.2008.12.018.

    [5]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406.

    [6]

    A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., 36 (1999), 135-249.doi: 10.1090/S0273-0979-99-00776-4.

    [7]

    A. Grigor'yan and V. A. Kondratiev, On the existence of positive solutions of semi-linear elliptic inequalities on Riemannian manifolds, International Mathematical Series, 12 (2010), 203-218.doi: 10.1007/978-1-4419-1343-2_8.

    [8]

    A. Grigor'yan, The existence of positive fundamental solution of the Laplace equation on Riemannian manifolds, Math. USSR Sb., 56 (1987), 349-358, (Translated from Russian Matem. Sbornik, 128 (1985), 354-363.

    [9]

    A. Grigor'yan and Y. Sun, On nonnegative of the inequality $\Delta u+u^{\sigma}\leq0$ on Riemannian manifolds, Comm. Pure Appl. Math., 67 (2014), 1336-1352.doi: 10.1002/cpa.21493.

    [10]

    I. Holopainen, Volume growth, Green's functions, and parabolicity of ends, Duke Math. J., 97 (1999), 319-346.doi: 10.1215/S0012-7094-99-09714-4.

    [11]

    I. Holopainen, A sharp $L^q-$Liouville theorem for $p\text{-}$harmonic functions, Israel J. Math., 115 (2000), 363-379.doi: 10.1007/BF02810597.

    [12]

    A. A. Kon'kov, Comparison theorems for second-order elliptic inequalities, Nonlinear Anal., 59 (2004), 583-608.doi: 10.1016/j.na.2004.06.002.

    [13]

    E. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities, Dokl. Akad. Nauk. (Russian), 359 (1998), 456-460.

    [14]

    E. Mitidieri and S. I. Pokhozhaev, Nonexistence of positive solutions for quasilinear elliptic problems on $\mathbbR^N$, Proc. Steklov Inst. Math., 227 (1999), 186-216.

    [15]

    E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\mathbbR^N$, Tran. Math. Inst. Steklova. (Russian), (1999), 192-222; translation in Proc. Steklov Inst. Math., 227 (1999), 186-216.

    [16]

    E. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Math. Inst. Steklova (in Russian), 234 (2001), 1-384. Engl. transl. Proc. Steklov Inst. Math., 234 (2001), 1-362.

    [17]

    E. Mitidieri and S. I. Pokhozhaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities (Nauka, Moscow, 2001), Tr. Math. Inst. im., V. A. Steklova, Ross. Akad. Nauk, 234 (2001).

    [18]

    W. M. Ni and J. Serrin, Nonexistence theorems for quasilinear partial differential equations, Proceedings of the conference commemorating the 1st centennial of the Circolo Matematico di Palermo (Italian), (Palermo, 1984). Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985), 171-185.

    [19]

    W. M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations: the anomalous case, Accad. Naz. Lincei, 77 (1986), 231-257.

    [20]

    Y. Sun, Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian manifolds, J. Math. Anal. Appl., 419 (2014), 643-661.doi: 10.1016/j.jmaa.2014.05.011.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return