Citation: |
[1] |
H. Abidi and M. Paicu, Existence globale pour un fluide inhomogéne, Ann. Inst. Fourier (Grenoble), 57 (2007), 883-917. |
[2] |
H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A., 138 (2008), 447-476.doi: 10.1017/S0308210506001181. |
[3] |
J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246. |
[4] |
R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.doi: 10.1007/s002200050067. |
[5] |
M. Cannone, Ondelettes Paraproduits et Navier-Stokes, Diderot editeur, Arts et Sciences, 1995. |
[6] |
C. Cao, D. Regmi and J. Wu, The 2-D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Diff. Eqns., 254 (2013), 2661-2681.doi: 10.1016/j.jde.2013.01.002. |
[7] |
C. Cao and J. Wu, Global regularity for the 2-D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.doi: 10.1016/j.aim.2010.08.017. |
[8] |
J. Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM Journal on Mathematical Analysis, 23 (1992), 20-28.doi: 10.1137/0523002. |
[9] |
J. Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.doi: 10.1007/BF02791256. |
[10] |
J. Y. Chemin and I. Gallagher, On the global wellposedness of the 3-D Navier-Stokes equations with large initial data, Ann. Sci. École Norm. Sup., 39 (2006), 679-698.doi: 10.1016/j.ansens.2006.07.002. |
[11] |
Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Diff. Eqns., 252 (2012), 2698-2724.doi: 10.1016/j.jde.2011.09.035. |
[12] |
Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3-D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.doi: 10.1007/s00220-008-0545-y. |
[13] |
G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279. |
[14] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 16 (1964), 269-315. |
[15] |
C. He and X. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Funct. Anal., 227 (2005), 113-152.doi: 10.1016/j.jfa.2005.06.009. |
[16] |
C. He and X. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Diff. Eqns., 213 (2005), 235-254.doi: 10.1016/j.jde.2004.07.002. |
[17] |
D. Iftimie, The 3-D Navier-Stokes equations seen as a perturbation of the 2-D Navier-Stokes equations, Bull. Soc. Math. France, 127 (1999), 473-517. |
[18] |
D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces, Rev. Mat. Iberoamericana, 15 (1999), 1-36.doi: 10.4171/RMI/248. |
[19] |
D. Iftimie and G. R. Raugel, Some results on the Navier-Stokes equations in thin 3-D domains, J. Diff. Eqns., 169 (2001), 281-331.doi: 10.1006/jdeq.2000.3900. |
[20] |
T. Kato, Strong $L^q$ solutions of the Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions, Mathematische Zeitschrift, 187 (1984), 471-480.doi: 10.1007/BF01174182. |
[21] |
I. Kukavica, W. Rusin and M. Ziane, A class of large $BMO^{-1}$ non-oscillatory data for the Navier-Stokes equations, J. Math. Fluid Mech., 16 (2014), 293-305.doi: 10.1007/s00021-013-0160-3. |
[22] |
I. Kukavica, W. Rusin and M. Ziane, A class of solutions of the Navier-Stokes equations with large data, J. Diff Eqns., 255 (2013), 1492-1514.doi: 10.1016/j.jde.2013.05.009. |
[23] |
I. Kukavica and M. Ziane, Regularity of the Navier-Stokes equation in a thin periodic domain with large data, Discrete Contin. Dyn. Syst., 16 (2006), 67-86.doi: 10.3934/dcds.2006.16.67. |
[24] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.doi: 10.1006/aima.2000.1937. |
[25] |
H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations, Tohoku Mathematical Journal., 41 (1989), 471-488.doi: 10.2748/tmj/1178227774. |
[26] |
Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrody-namics with zero viscosity equations, Discrete Contin. Dyn. Syst-A, 25 (2009), 575-583.doi: 10.3934/dcds.2009.25.575. |
[27] |
PG. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman $&$ Hall/CRC: London, Boca Raton, FL, 2002.doi: 10.1201/9781420035674. |
[28] |
F. Lin and P. Zhang, Global small solutions to MHD type system (I): 3-D case, Comm. Pure Appl. Math., in press. |
[29] |
F. Lin, L. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system, arXiv:1302.5877v2 [math.AP]. |
[30] |
C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Meth. Appl. Sci., 32 (2009), 53-76.doi: 10.1002/mma.1026. |
[31] |
M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., 307 (2011), 713-759.doi: 10.1007/s00220-011-1350-6. |
[32] |
M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.doi: 10.1016/j.jfa.2012.01.022. |
[33] |
J. Peetre, New Thoughts on Besov Spaces, Duke Univers. Math. Ser., vol. 1, Duke University, Durham, NC, 1976. |
[34] |
F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbbR^3$, Annales lInstitut Henri Poincaré, 13 (1996), 319-336. |
[35] |
G. Raugel and G. R. Sell, Équations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale, C. R. Acad. Sci. Paris Sér. I Math., 309 (1989), 299-303. |
[36] |
X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magentic diffusion, J. Funct. Anal., 267 (2014), 503-541.doi: 10.1016/j.jfa.2014.04.020. |
[37] |
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: 10.1002/cpa.3160360506. |
[38] |
J. Wu, Y. Wu and X. Xu, Global small solution to the 2-D MHD system with a velocity damping term, arXiv:1311.6185v1 [math.AP]. |
[39] |
T. Zhang, An elementary proof of the global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system, arXiv:1404.5681v1 [math.AP]. |
[40] |
Y. Zhou, Remarks on regularities for the 3-D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.doi: 10.3934/dcds.2005.12.881. |