Citation: |
[1] |
T. Candy, Global existence for $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666. |
[2] |
V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296. |
[3] |
D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253. |
[4] |
W. E. Thirring, A soluble relativistic field theory, Ann.Phys., 3 (1958), 91-112. |
[5] |
H. Huh, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.doi: 10.1016/j.jmaa.2011.02.042. |
[6] |
H. Huh, Global solutions to Gross-Neveu equations, Lett. Math. Phys., 103 (2013), 927-931.doi: 10.1007/s11005-013-0622-9. |
[7] |
S. Machihara, K. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.doi: 10.1215/0023608X-2009-018. |
[8] |
S. Selberg and A. Tefahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential and Integral Equations, 23 (2010), 265-278. |
[9] |
P. D'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, Journal of EMS, 9 (2007), 877-899.doi: 10.4171/JEMS/100. |
[10] |
Y. Zhang, Global strong solution to a nonlinear Dirac type equation in one dimension, Nonlinear Analysis, 80 (2013), 150-155.doi: 10.1016/j.na.2012.10.008. |