\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Derivation of the Quintic NLS from many-body quantum dynamics in $T^2$

Abstract Related Papers Cited by
  • In this paper, we investigate the dynamics of a boson gas with three-body interactions in $T^2$. We prove that when the particle number $N$ tends to infinity, the BBGKY hierarchy of $k$-particle marginals converges to a infinite Gross-Pitaevskii(GP) hierarchy for which we prove uniqueness of solutions, and for the asymptotically factorized $N$-body initial datum, we show that this $N\rightarrow\infty$ limit corresponds to the quintic nonlinear Schrödinger equation. Thus, the Bose-Einstein condensation is preserved in time.
    Mathematics Subject Classification: Primary: 35L15, 35L45; Secondary: 35Q40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adami, C. Bardos, F. Golse and A. Teta, Towards a rigorous derivation of the cubic nonlinear Schrodinger equation in dimension one, Asymptot. Anal., 40 (2004), 93-108.

    [2]

    R. Adami, F. Golse and A. Teta, Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys., 127 (2007), 1193-1220.doi: 10.1007/s10955-006-9271-z.

    [3]

    E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J., 59 (1989), 337-357.doi: 10.1215/S0012-7094-89-05915-2.

    [4]

    Thomas Chen and Natasa Pavlović, On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies, Discr. Contin. Dyn. Syst. A, 27 (2010), 715-739.doi: 10.3934/dcds.2010.27.715.

    [5]

    Thomas Chen and Natasa Pavlović, The quintic NLS as the mean field limit of a Boson gas with three-body interactions, J. Funct. Anal., 260 (2011), 959-997.doi: 10.1016/j.jfa.2010.11.003.

    [6]

    Thomas Chen and Natasa Pavlović, A new proof of existence of solutions for focusing and defocusing Gross-Pitaevskii hierarchies, Proc. Amer. Math. Soc., 141 (2013), 279-293.doi: 10.1090/S0002-9939-2012-11308-5.

    [7]

    T. Chen and N. Pavlović, Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in $d = 3$ based on spacetime norms, Ann. H. Poincare, 15 (2014), 543-588.doi: 10.1007/s00023-013-0248-6.

    [8]

    T. Chen and K. Taliaferro, Derivation in strong topology and global well-posedness of solutions to the Gross-Pitaevskii hierarchy, Commun. PDE, 39 (2014), 1658-1693.doi: 10.1080/03605302.2014.917380.

    [9]

    T. Chen, C. Hainzl, N. Pavlović and R. Seiringer, Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, CPAM, to appear, in arXiv:1307.3168.

    [10]

    X. Chen, Second order corrections to mean field evolution for weakly interacting Bosons in the case of three-body interactions, Arch. Rational Mech. Anal., 203 (2012), 455-497.doi: 10.1007/s00205-011-0453-8.

    [11]

    X. Chen, Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps, J. Math. Pures Appl., 98 (2012), 450-478.doi: 10.1016/j.matpur.2012.02.003.

    [12]

    X. Chen, On the rigorous derivation of the 3d cubic nonlinear Schrödinger equation with a quadratic trap, Arch. Rational Mech. Anal., 210 (2013), 365-408.doi: 10.1007/s00205-013-0645-5.

    [13]

    X. Chen and J. Holmer, On the rigorous derivation of the 2d cubic nonlinear Schrödinger equation from 3d quantum many-body dynamics, Arch. Rational Mech. Anal., 210 (2013), 909-954.doi: 10.1007/s00205-013-0667-z.

    [14]

    X. Chen and J. Holmer, Focusing quantum many-body dynamics: The rigorous derivation of the 1d focusing cubic nonlinear Schrödinger equation, 41pp, arXiv:1308.3895.

    [15]

    X. Chen and J. Holmer, Focusing quantum many-body dynamics II: The rigorous derivation of the 1d focusing cubic nonlinear Schrödinger equation from 3D, 48pp, arXiv:1407.8457.

    [16]

    X. Chen and J. Holmer, On the Klainerman-Machedon onjecture of the quantum BBGKY hierarchy with self-interaction, preprint, arxiv:1303.5385.

    [17]

    X. Chen and J. Holmer, Correlation structures, many-body scattering processes and the derivation of the Gross-Pitaevskii hierarchy, 48pp, arXiv:1409.1425.

    [18]

    X. Chen and P. Smith, On the unconditional uniqueness of solutions to the infinite radial Chern- Simons-Schrödinger hierarchy, Analysis and PDE, 7 (2014), 1683-1712.doi: 10.2140/apde.2014.7.1683.

    [19]

    D. De Silva, N. Pavlović, G. Staffilani and N. Tzirakis, Global well-posedness for a periodic nonlinear Schrodinger equation in 1D and 2D, Discrete and Continuous Dynamical Systems-Series A, 19 (2007), 37-65.doi: 10.3934/dcds.2007.19.37.

    [20]

    A. Elgart, L. Erdos, B. Schlein and H.-T. Yau, Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Rat. Mech. Anal., 179 (2006), 265-283.doi: 10.1007/s00205-005-0388-z.

    [21]

    A. Elgart and B. Schlein, Mean field dynamics of Boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.doi: 10.1002/cpa.20134.

    [22]

    L. Erdős, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems, Invent. Math., 167 (2007), 515-614.doi: 10.1007/s00222-006-0022-1.

    [23]

    L. Erdős, B. Schlein and H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math., 172 (2010), 291-370.doi: 10.4007/annals.2010.172.291.

    [24]

    L. Erdős, B. Schlein and H.-T. Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., 22 (2009), 1099-1156.doi: 10.1090/S0894-0347-09-00635-3.

    [25]

    P. Gressman, V. Sohinger and G. Staffilani, On the uniqueness of solutions to the periodic 3D Gross-Pitaevskii hierarchy, J. Funct. Anal., 266 (2014), 4705-4764.doi: 10.1016/j.jfa.2014.02.006.

    [26]

    M. G. Grillakis and M. Machedon, Pair excitations and the mean .eld approximation of interacting Bosons, I, Commun. Math. Phys., 324 (2013), 601-636.doi: 10.1007/s00220-013-1818-7.

    [27]

    M. G. Grillakis, M. Machedon and D. Margetis, Second order corrections to mean field evolution for weakly interacting Bosons. I, Commun. Math. Phys., 294 (2010), 273-301.doi: 10.1007/s00220-009-0933-y.

    [28]

    M. G. Grillakis, M. Machedon and D. Margetis, Second order corrections to mean field evolution for weakly interacting Bosons. II, Adv. Math., 228 (2011) 1788-1815.doi: 10.1016/j.aim.2011.06.028.

    [29]

    Y. Hong, K. Taliaferro and Z. Xie, Unconditional uniqueness of the cubic Gross-Pitaevskii hierarchy with low regularity, 26pp, arXiv:1402.5347.

    [30]

    Kay Kirkpatrick, Benjamin Schlein and Gigliola Staffilani, Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics, American Journal of Mathematics, 133 (2011), 91-130.doi: 10.1353/ajm.2011.0004.

    [31]

    S. Klainerman and M. Machedon, On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Comm. Math. Phys., 279 (2008), 169-185.doi: 10.1007/s00220-008-0426-4.

    [32]

    M. Lewin, P. T. Nam and N. Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math., 254 (2014), 570-621.doi: 10.1016/j.aim.2013.12.010.

    [33]

    E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett., 88 (2002), 170409, 1-4.

    [34]

    E. H. Lieb and R. Seiringer and J. Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001), 17-31.doi: 10.1007/s002200100533.

    [35]

    E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, 34 (2005), Oberwolfach Seminars Series, Birkhäuser.

    [36]

    I. Rodnianski and B. Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Comm. Math. Phys., 291 (2009), 31-61.doi: 10.1007/s00220-009-0867-4.

    [37]

    L. Pitaevskii, Vortex lines in an imperfect Bose-gas, Sov. phys. JETP, 13 (1961), 451-454.

    [38]

    P. Pickl, A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., 97 (2011), 151-164.doi: 10.1007/s11005-011-0470-4.

    [39]

    H. Spohn, Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., 52 (1980), 569-615.doi: 10.1103/RevModPhys.52.569.

    [40]

    V. Sohinger, A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on $\mathbbT^3$ from the dynamics of many-body quantum systems, Ann. I.H.Poincaré-AN. doi: 10.1016/j.anihpc.2014.09.005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return