Citation: |
[1] |
L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical aspects of evolving interfaces (Funchal, 2000), 1-52, Lecture Notes in Math., 1812, Springer, Berlin, 2003.doi: 10.1007/978-3-540-39189-0_1. |
[2] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. |
[3] |
G. Bouchitté, G. Buttazzo and L. A. De Pascale, A p-Laplacian approximation for some mass optimization problems, J. Optim. Theory Appl., 118 (2003), 1-25.doi: 10.1023/A:1024751022715. |
[4] |
G. Carlier, Duality and existence for a class of mass transportation problems and economic applications, Adv. Math. Econ., 5 (2003), 1-21.doi: 10.1007/978-4-431-53979-7_1. |
[5] |
P-A. Chiappori, R. McCann and L. Nesheim, Hedoniic prices equilibria, stable matching, and optimal transport: equivalence, topolgy, and uniqueness, Econ. Theory, 42 (2010), 317-354.doi: 10.1007/s00199-009-0455-z. |
[6] |
I. Ekeland, An optimal matching problem, ESAIM COCV, 11 (2005), 57-71.doi: 10.1051/cocv:2004034. |
[7] |
I. Ekeland, Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types, Econ. Theory, 42 (2010), 275-315.doi: 10.1007/s00199-008-0427-8. |
[8] |
I. Ekeland, Notes on optimal transportation, Econ. Theory, 42 (2010), 437-459.doi: 10.1007/s00199-008-0426-9. |
[9] |
I. Ekeland, J. J Hecckman and L. Nesheim, Identificacation and estimates of Hedonic models, Journal of Political Economy, 112 (2004), S60-S109. |
[10] |
L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current Developments in Mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999. |
[11] |
L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), no. 653.doi: 10.1090/memo/0653. |
[12] |
K. Fan, Minimax theorems, Pro. Nat. Acad. Sci., 39 (1953), 42-47. |
[13] |
M. Feldman and R. J. McCann, Monge's transport problem on a Riemannian manifold, Trans. Amer. Math. Soc., 354 (2002), 1667-1697.doi: 10.1090/S0002-9947-01-02930-0. |
[14] |
N. Igbida, J.M. Mazón, J. D. Rossi and J. J. Toledo, A Monge-Kantorovich mass transport problem for a discrete distance, J. Funct. Anal., 260 (2011), 3494-3534.doi: 10.1016/j.jfa.2011.02.023. |
[15] |
J. M. Mazón, J. D. Rossi and J. Toledo, An optimal transportation problem with a cost given by the Euclidean distance plus import/export taxes on the boundary, Rev. Mat. Iberoam., 30 (2014), 277-308.doi: 10.4171/RMI/778. |
[16] |
J. M. Mazón, J. D. Rossi and J. Toledo, An optimal matching problem for the Euclidean distance, SIAM J. Math. Anal., 46 (2014), 233-255doi: 10.1137/120901465. |
[17] |
N. Igbida, J.M. Mazón, J. D. Rossi and J. Toledo, Mass transport problems for costs given by Finsler distances via $p$-Laplacian approximations, Preprint. |
[18] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics. Vol. 58, 2003.doi: 10.1007/b12016. |
[19] |
C. Villani, Optimal Transport. Old and New, Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin, 2009.doi: 10.1007/978-3-540-71050-9. |