Citation: |
[1] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.doi: 10.1007/BF01176474. |
[2] |
L. Boccardo, Problemi differenziali ellittici e parabolici con dati misure, Boll. Un. Mat. Ital. A, 11 (1997), 439-461. |
[3] |
L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.doi: 10.1006/jfan.1996.3040. |
[4] |
L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.doi: 10.1080/03605309208820857. |
[5] |
L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551. |
[6] |
V. Bögelein, F. Duzaar and U. Gianazza, Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45 (2013), 3283-3330.doi: 10.1137/130925323. |
[7] |
V. Bögelein, F. Duzaar and U. Gianazza, Sharp boundedness and continuity results for the singular porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-31.pdf. |
[8] |
V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with $p,q$-growth: a variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267.doi: 10.1007/s00205-013-0646-4. |
[9] |
V. Bögelein, T. Lukkari and C. Scheven, The obstacle problem for the porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-33.pdf |
[10] |
B. E. Dahlberg and C. E. Kenig, Non-negative solutions to fast diffusions, Rev. Mat. Iberoamericana, 4 (1988), 11-29.doi: 10.4171/RMI/61. |
[11] |
P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions, EMS Tracts in Mathematics, 1, European Mathematical Society (EMS), Zürich, 2007.doi: 10.4171/033. |
[12] |
A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989. |
[13] |
A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 97-126.doi: 10.1016/j.anihpc.2005.02.006. |
[14] |
A. Dall'Aglio and L. Orsina, Nonlinear parabolic equations with natural growth conditions and $L^1$ data, Nonlinear Anal., 27 (1996), 59-73.doi: 10.1016/0362-546X(94)00363-M. |
[15] |
E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics. Springer, New York, 2012. |
[16] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer Universitext, Springer, New York, 1993.doi: 10.1007/978-1-4612-0895-2. |
[17] |
T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 591-613. |
[18] |
T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793. |
[19] |
J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185 (2006), 411-435.doi: 10.1007/s10231-005-0160-x. |
[20] |
J. Kinnunen and P. Lindqvist, Definition and properties of supersolutions to the porous medium equation, J. Reine Angew. Math., 618 (2008), 135-168.doi: 10.1515/CRELLE.2008.035. |
[21] |
T. Lukkari, The porous medium equation with measure data, J. Evol. Equ., 10 (2010), 711-729.doi: 10.1007/s00028-010-0067-x. |
[22] |
T. Lukkari, The fast diffusion equation with measure data, Nonlinear Differ. Equ. Appl., 19 (2011), 329-343.doi: 10.1007/s00030-011-0131-4. |
[23] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360. |