\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Very weak solutions of singular porous medium equations with measure data

Abstract Related Papers Cited by
  • We consider non-homogeneous, singular ($ 0 < m < 1 $) porous medium type equations with a non-negative Radon-measure $\mu$ having finite total mass $\mu(E_T)$ on the right-hand side. We deal with a Cauchy-Dirichlet problem for these type of equations, with homogeneous boundary conditions on the parabolic boundary of the domain $E_T$, and we establish the existence of a solution in the sense of distributions. Finally, we show that the constructed solution satisfies linear pointwise estimates via linear Riesz potentials.
    Mathematics Subject Classification: Primary: 35K67; Secondary: 31B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.doi: 10.1007/BF01176474.

    [2]

    L. Boccardo, Problemi differenziali ellittici e parabolici con dati misure, Boll. Un. Mat. Ital. A, 11 (1997), 439-461.

    [3]

    L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.doi: 10.1006/jfan.1996.3040.

    [4]

    L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.doi: 10.1080/03605309208820857.

    [5]

    L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551.

    [6]

    V. Bögelein, F. Duzaar and U. Gianazza, Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45 (2013), 3283-3330.doi: 10.1137/130925323.

    [7]

    V. Bögelein, F. Duzaar and U. Gianazza, Sharp boundedness and continuity results for the singular porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-31.pdf.

    [8]

    V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with $p,q$-growth: a variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267.doi: 10.1007/s00205-013-0646-4.

    [9]

    V. Bögelein, T. Lukkari and C. Scheven, The obstacle problem for the porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-33.pdf

    [10]

    B. E. Dahlberg and C. E. Kenig, Non-negative solutions to fast diffusions, Rev. Mat. Iberoamericana, 4 (1988), 11-29.doi: 10.4171/RMI/61.

    [11]

    P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions, EMS Tracts in Mathematics, 1, European Mathematical Society (EMS), Zürich, 2007.doi: 10.4171/033.

    [12]

    A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989.

    [13]

    A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 97-126.doi: 10.1016/j.anihpc.2005.02.006.

    [14]

    A. Dall'Aglio and L. Orsina, Nonlinear parabolic equations with natural growth conditions and $L^1$ data, Nonlinear Anal., 27 (1996), 59-73.doi: 10.1016/0362-546X(94)00363-M.

    [15]

    E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics. Springer, New York, 2012.

    [16]

    E. DiBenedetto, Degenerate Parabolic Equations, Springer Universitext, Springer, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [17]

    T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 591-613.

    [18]

    T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793.

    [19]

    J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185 (2006), 411-435.doi: 10.1007/s10231-005-0160-x.

    [20]

    J. Kinnunen and P. Lindqvist, Definition and properties of supersolutions to the porous medium equation, J. Reine Angew. Math., 618 (2008), 135-168.doi: 10.1515/CRELLE.2008.035.

    [21]

    T. Lukkari, The porous medium equation with measure data, J. Evol. Equ., 10 (2010), 711-729.doi: 10.1007/s00028-010-0067-x.

    [22]

    T. Lukkari, The fast diffusion equation with measure data, Nonlinear Differ. Equ. Appl., 19 (2011), 329-343.doi: 10.1007/s00030-011-0131-4.

    [23]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return