Citation: |
[1] |
A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups, Journal of Differential Equations, 220 (2006), 434-477.doi: 10.1016/j.jde.2005.04.007. |
[2] |
A. Ćwiszewski, Degree theory for perturbations of m-accretive operators generating compact semigroups with constraints, Journal of Evolution Equations, 7 (2007), 1-33.doi: 10.1007/s00028-006-0225-3. |
[3] |
A. Ćwiszewski, Positive periodic solutions of parabolic evolution problems: A translation along trajectories approach, Central European Journal of Mathematics, 9 (2011), 244-268.doi: 10.2478/s11533-011-0010-6. |
[4] |
A. Ćwiszewski, Forced oscillations in strongly damped beam equation, Topol. Methods Nonlinear Anal., 37 (2011), 259-282. |
[5] |
A. Ćwiszewski, Averaging principle and hyperbolic evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 75 (2012), 2362-2375doi: 10.1016/j.na.2011.10.034. |
[6] |
A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations, Discrete Continuous Dynam. Systems - B, 22 (2008), 605-628.doi: 10.3934/dcds.2008.22.605. |
[7] |
A. Ćwiszewski and P. Kokocki, Periodic solutions of nonlinear hyperbolic evolution systems, Journal of Evolution Equations, 10 (2010), 677-710.doi: 10.1007/s00028-010-0066-y. |
[8] |
J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lectures Note Series, 278, Cambridge University Press, Cambridge, 2000.doi: 10.1017/CBO9780511526404. |
[9] |
K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[10] |
M. Furi and M. P. Pera, Global bifurcation of fixed points and the Poincaré translation operator on manifolds, Annali di Matematica pura ed applicata, 173 (1997), 313-331.doi: 10.1007/BF01783474. |
[11] |
M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable manifolds, Pacific Journal of Mathematics, 121 (1986), 321-338. |
[12] |
R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, 586, Springer-Verlag, Berlin, 1977. |
[13] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981. |
[14] |
E. Hille and R. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, RI, 1957. |
[15] |
M. Kamenskii, O. Makarenkov and P. Nistri, A continuation principle for a class of periodically perturbed autonomous systems, Mathematische Nachrichten, 281 (2008), 42-61.doi: 10.1002/mana.200610586. |
[16] |
P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278.doi: 10.1016/j.na.2013.02.030. |
[17] |
B. Laloux and J. Mawhin, Multiplicity, Leray-Schauder formula, and bifurcation, Jourbal of Differential Equations, 24 (1977), 309-322. |
[18] |
J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Amer. Math. Soc., Providence, R.I., 1979. |
[19] |
J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations, in Topological methods in differential equations and inclusions, Kluwer Acad. Publ., Dordrecht, 1995. |
[20] |
J. Mawhin, Continuation theorems for nonlinear operator equations: the legacy of Leray and Schauder, Travaux mathmatiques, Centre Univ. Luxembourg, Luxembourg, 1999. |
[21] |
J. Mawhin, Topological bifurcation theory: old and new, Progress in variational methods, World Sci. Publ., Hackensack, 2011. |
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[23] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. |