November  2015, 14(6): 2335-2362. doi: 10.3934/cpaa.2015.14.2335

Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA, United States

Received  January 2015 Revised  June 2015 Published  September 2015

In this paper, we study the following nonlinear elliptic system \begin{eqnarray} \left\{\begin{array}{ll} (-\Delta)^{\frac{\alpha}{2}}u_i=f_i(u),\ x\in \Omega,\quad i=1,...,m, \\ u_i(x)=0, \quad \quad\quad \ \ x\in \Omega^c,\quad i=1,...,m, \end{array} \right. \end{eqnarray} where $0 < \alpha < 2$ and $\Omega$ is either the unit ball $B_1(0)=\{x\in \mathbb R^n | \|x\| < 1 \}$ or the half space $\mathbb R_+^n = \{x=(x_1,...,x_n)\in \mathbb R^n | x_n > 0\}$. Instead of investigating the pseudo differential system directly, we study an equivalent integral system, i.e., \begin{eqnarray} u_i(x)=\int_{B_1(0)}G_1(x,y)f_i(u(y))dy,\quad x\in B_1(0),\quad i=1,...,m, \end{eqnarray} and \begin{eqnarray} u_i(x)=C_ix_n^{\frac{\alpha}{2}}+\int_{\mathbb{R}_+^n}G_{\infty}(x,y)f_i(u(y))dy,\quad x\in \mathbb{R}_+^n,\quad i=1,...,m, \end{eqnarray} where $C_i$ are non-negative constants, $G_1(x,y)$ is Green's function for $B_1(0)$ and $G_{\infty}(x,y)$ is Green function of $\mathbb R_+^n$. We use the method of moving planes in integral forms to prove the radial symmetry and monotonicity of positive solutions in $B_1(0)$ and non-existence of positive solutions in $\mathbb R_+^n$. Moreover, we also study regularity of positive solutions in $B_1(0)$.
Citation: Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335
References:
[1]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[2]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[4]

W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, preprint,, \arXiv{1309.7499}., ().   Google Scholar

[5]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198. doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equation, Commun. Pure Appl. Anal., 4 (2005), 1-8.  Google Scholar

[7]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 946-960. doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[8]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Series on Differential Equations & Dynamical Systems, 4. AIMS, Springfield, MO, 2010. doi: 978-1-60133-006-2.  Google Scholar

[9]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[11]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[12]

W. Chen, C. Li, L. Zhang and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbb R_+^n$,, \emph{Discrete Contin. Dyn. Syst.}, ().   Google Scholar

[13]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2011), 744-753. doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[14]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. in Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[15]

Q. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329. doi: 10.1007/s00220-006-0054-9.  Google Scholar

[16]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian, Probab. Theory Related Fields, 134 (2006), 649-694. doi: 10.1007/s00440-005-0438-3.  Google Scholar

[17]

T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.  Google Scholar

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. in Math., 3 (2011), 2676-2699. doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[19]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplcian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[20]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 723-750. doi: 10.1007/s00205-014-0740-2.  Google Scholar

[21]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

show all references

References:
[1]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[2]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[4]

W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, preprint,, \arXiv{1309.7499}., ().   Google Scholar

[5]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198. doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equation, Commun. Pure Appl. Anal., 4 (2005), 1-8.  Google Scholar

[7]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 946-960. doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[8]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Series on Differential Equations & Dynamical Systems, 4. AIMS, Springfield, MO, 2010. doi: 978-1-60133-006-2.  Google Scholar

[9]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[11]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[12]

W. Chen, C. Li, L. Zhang and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbb R_+^n$,, \emph{Discrete Contin. Dyn. Syst.}, ().   Google Scholar

[13]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2011), 744-753. doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[14]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. in Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[15]

Q. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329. doi: 10.1007/s00220-006-0054-9.  Google Scholar

[16]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian, Probab. Theory Related Fields, 134 (2006), 649-694. doi: 10.1007/s00440-005-0438-3.  Google Scholar

[17]

T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.  Google Scholar

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. in Math., 3 (2011), 2676-2699. doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[19]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplcian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[20]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 723-750. doi: 10.1007/s00205-014-0740-2.  Google Scholar

[21]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[1]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[2]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[3]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[4]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[5]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[6]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[7]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[8]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[9]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[10]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[11]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[12]

Ziyi Cai, Haiyang He. Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4349-4362. doi: 10.3934/cpaa.2020196

[13]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[14]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462

[16]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445

[18]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[19]

Ran Zhuo, Fengquan Li, Boqiang Lv. Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 977-990. doi: 10.3934/cpaa.2014.13.977

[20]

Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]