\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces

Abstract Related Papers Cited by
  • We consider the Keller-Segel model coupled with the incompressible Navier-Stokes equations in dimension three. We prove the local in time existence of the solution for large initial data and the global in time existence of the solution for small initial data plus some smallness condition on the gravitational potential in the critical Besov spaces, which are new results for the model.
    Mathematics Subject Classification: 35Kxx, 35Qxx, 76Dxx, 76Zxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-16830-7.

    [2]

    M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics. Vol. III, North-Holland, Amsterdam, 2004, 161-244.

    [3]

    M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271-2297.doi: 10.3934/dcds.2013.33.2271.

    [4]

    R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.doi: 10.1080/03605302.2010.497199.

    [5]

    H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., 16 (1964), 269-315.

    [6]

    P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, vol. 431 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.doi: 10.1201/9781420035674.

    [7]

    A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.doi: 10.1142/S0218202510004507.

    [8]

    I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 2277-2282.

    [9]

    Q. Zhang, Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces, Nonlinear Anal. Real World Appl., 17 (2014), 89-100.doi: 10.1016/j.nonrwa.2013.10.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return