\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion

Abstract Related Papers Cited by
  • This paper is concerned with a type of quasilinear Schrödinger equations of the form \begin{eqnarray} -\Delta u+V(x)u-p\Delta(|u|^{2p})|u|^{2p-2}u=\lambda|u|^{q-2}u+|u|^{2p2^{*}-2}u, \end{eqnarray} where $\lambda>0, N\ge3, 4p < q < 2p2^*, 2^*=\frac{2N}{N-2}, 1< p < +\infty$. For any given $k \ge 0$, by using a change of variables and Nehari minimization, we obtain a sign-changing minimizer with $k$ nodes.
    Mathematics Subject Classification: 35J20, 35J62, 35Q55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.

    [2]

    S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135-1155.doi: 10.1017/S0308210505000727.

    [3]

    T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\R^N$, Arch. Ration. Mech. Anal., 124 (1993), 261-276.doi: 10.1007/BF00953069.

    [4]

    T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrodinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33, (2012), 7-26,

    [5]

    G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. TMA, 25 (1995), 41-59.doi: 10.1016/0362-546X(94)E0070-W.

    [6]

    João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.doi: 10.1016/j.jde.2009.11.030.

    [7]

    H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.

    [8]

    H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.doi: 10.2307/2044999.

    [9]

    D. Cao and X. Zhu, On the existence and nodal character of semilinear elliptic equations, Acta. Math. Sci., 8 (1988), 345-359.

    [10]

    X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.

    [11]

    G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Func. Anal., 69 (1986), 289-306.doi: 10.1016/0022-1236(86)90094-7.

    [12]

    M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.doi: 10.1016/j.na.2003.09.008.

    [13]

    M. Conti, L. Merizzi and S. Terracini, Radial solutions of superlinear equations on $\R^N$. I. A global variational approach, Arch. Ration. Mech. Anal., 153 (2000), 291-316.doi: 10.1007/s002050050015.

    [14]

    A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.doi: 10.1007/s002200050191.

    [15]

    Y. Deng, The existence and nodal character of solutions in $\R ^N$ for semilinear elliptic equations involving critical Sobolev exponents, Acta. Math. Sci., 9 (1989), 385-402.

    [16]

    Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $\R^N$, Commun. Math. Sci., 9 (2011), 859-878.doi: 10.4310/CMS.2011.v9.n3.a9.

    [17]

    Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, Journal of Mathematical Physics, 54 (2013), 011504.doi: 10.1063/1.4774153.

    [18]

    Y. Deng and W. Shuai, Positive solutions for quasilinear Schrodinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287.doi: 10.3934/cpaa.2014.13.2273.

    [19]

    P. Felmer and C. Torres, Radial symmetry of ground states for a regional fractional nonlinear Schrodinger equation, Commun. Pure Appl. Anal., 13 (2014), 2395-2406.doi: 10.3934/cpaa.2014.13.2395.

    [20]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1998.

    [21]

    S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.

    [22]

    Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method, Journal Differential Equations, 254 (2013), 102-124doi: 10.1016/j.jde.2012.09.006.

    [23]

    E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.doi: 10.1063/1.525675.

    [24]

    J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I., Proc. Amer. Math. Soc., 131 (2003), 441-448.doi: 10.1090/S0002-9939-02-06783-7.

    [25]

    J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation, Nonlinearity, 21 (2008), 121-133.doi: 10.1088/0951-7715/21/1/007.

    [26]

    J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493.doi: 10.1016/S0022-0396(02)00064-5.

    [27]

    J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.doi: 10.1081/PDE-120037335.

    [28]

    X. Q. Liu and J. Q. Liu, Quasilinear elliptic equations via perturbation meathod, Proc. Amer. Math. Soc. 141 (2013), 253-263.doi: 10.1090/S0002-9939-2012-11293-6.

    [29]

    C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5-7.

    [30]

    A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$, J. Differential Equations, 229 (2006), 570-587.doi: 10.1016/j.jde.2006.07.001.

    [31]

    A. Moameni, Soliton solutions for quasilinear Schrodinger equations involving supercritical exponent in $\R^N$, Commun. Pure Appl. Anal., 7 (2007), 89-105.doi: 10.3934/cpaa.2008.7.89.

    [32]

    Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.

    [33]

    M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.doi: 10.1007/s005260100105.

    [34]

    B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.

    [35]

    Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrodinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.doi: 10.1016/j.na.2012.10.005.

    [36]

    Marco A. S. Souto and Sergio H. M. Soares, Ground state solutions for quasilinear stationary Schrodinger equations with critical growth, Commun. Pure Appl. Anal., 12 (2012), 99-116.doi: 10.3934/cpaa.2013.12.99.

    [37]

    W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

    [38]

    T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differential Equations, 27 (2006), 421-437.doi: 10.1007/s00526-006-0015-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(234) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return