January  2015, 14(1): 269-284. doi: 10.3934/cpaa.2015.14.269

Statistical exponential formulas for homogeneous diffusion

1. 

Department of Mathematics, Sewanee: The University of the South, Sewanee, TN 37383

Received  March 2014 Revised  April 2014 Published  September 2014

Let $\Delta^{1}_{p}$ denote the $1$-homogeneous $p$-Laplacian, for $1 \leq p \leq \infty$. This paper proves that the unique bounded, continuous viscosity solution $u$ of the Cauchy problem \begin{eqnarray} u_{t} - ( \frac{p}{ N + p - 2 } ) \Delta^{1}_{p} u = 0 \quad \mbox{for} \quad x \in R^N \quad \mbox{and} \quad t > 0 , \\ \\ u(\cdot,0) = u_0 \in BUC(R^N). \end{eqnarray} is given by the exponential formula \begin{eqnarray} u(t) := \lim_{n \to \infty}{ ( M^{t/n}_{p} )^{n} u_{0} } \ , \end{eqnarray} where the statistical operator $M^h_p \colon BUC( R^{N} ) \to BUC( R^{N} )$ is defined by \begin{eqnarray} (M^{h}_{p} \varphi)(x) := (1-q) median_{\partial B(x,\sqrt{2h})}{ \{ \varphi \} } + q \int_{\partial B(x,\sqrt{2h})}{ \varphi ds } \end{eqnarray} when $1 \leq p \leq 2$, with $q := \frac{ N ( p - 1 ) }{ N + p - 2 }$, and by \begin{eqnarray} (M^{h}_{p} \varphi )(x) := ( 1 - q ) midrange_{\partial B(x,\sqrt{2h})}{ \{ \varphi\} } + q \int_{\partial B(x,\sqrt{2h})}{ \varphi ds } \end{eqnarray} when $p \geq 2$, with $q = \frac{ N }{ N + p - 2 }$. Possible extensions to problems with Dirichlet boundary conditions are mentioned briefly.
Citation: Matthew B. Rudd. Statistical exponential formulas for homogeneous diffusion. Communications on Pure & Applied Analysis, 2015, 14 (1) : 269-284. doi: 10.3934/cpaa.2015.14.269
References:
[1]

G. Akagi, P. Juutinen and R. Kajikiya, Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Math. Ann., 343 (2009), 921-953. doi: 10.1007/s00208-008-0297-1.  Google Scholar

[2]

G. Akagi and K. Suzuki, Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Calc. Var. Partial Differential Equations, 31 (2008), 457-471. doi: 10.1007/s00526-007-0117-6.  Google Scholar

[3]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal., 123 (1993), 199-257. doi: 10.1007/BF00375127.  Google Scholar

[4]

M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity solutions and applications, vol. 1660 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1997, Lectures given at the 2nd C.I.M.E. Session held in Montecatini Terme, June 12-20, 1995, Edited by I. Capuzzo Dolcetta and P. L. Lions, Fondazione C.I.M.E.. [C.I.M.E. Foundation].  Google Scholar

[5]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283.  Google Scholar

[6]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500. doi: 10.1137/0732020.  Google Scholar

[7]

F. Catté, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets, SIAM J. Numer. Anal., 32 (1995), 1895-1909. doi: 10.1137/0732085.  Google Scholar

[8]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.  Google Scholar

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[10]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[11]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681.  Google Scholar

[12]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. II, Trans. Amer. Math. Soc., 330 (1992), 321-332. doi: 10.2307/2154167.  Google Scholar

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. III, J. Geom. Anal., 2 (1992), 121-150. doi: 10.1007/BF02921385.  Google Scholar

[14]

L. C. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557. doi: 10.1512/iumj.1993.42.42024.  Google Scholar

[15]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. IV, J. Geom. Anal., 5 (1995), 77-114. doi: 10.1007/BF02926443.  Google Scholar

[16]

Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40 (1991), 443-470. doi: 10.1512/iumj.1991.40.40023.  Google Scholar

[17]

Y. Giga, Surface Evolution Equations, vol. 99 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 2006, A level set approach.  Google Scholar

[18]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1985.  Google Scholar

[19]

A. Grigor'yan, Heat Kernel and Analysis on Manifolds, vol. 47 of AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI, 2009.  Google Scholar

[20]

D. Hartenstine and M. Rudd, Asymptotic statistical characterizations of $p$-harmonic functions of two variables, Rocky Mountain J. Math., 41 (2011), 493-504. doi: 10.1216/RMJ-2011-41-2-493.  Google Scholar

[21]

D. Hartenstine and M. Rudd, Statistical functional equations and $p$-harmonious functions, Adv. Nonlinear Stud., 13 (2013), 191-207.  Google Scholar

[22]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications.  Google Scholar

[23]

T. Ilmanen, P. Sternberg and W. P. Ziemer, Equilibrium solutions to generalized motion by mean curvature, J. Geom. Anal., 8 (1998), 845-858. Dedicated to the memory of Fred Almgren. doi: 10.1007/BF02922673.  Google Scholar

[24]

H. Ishii, G. E. Pires and P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan, 51 (1999), 267-308. doi: 10.2969/jmsj/05120267.  Google Scholar

[25]

V. Julin and P. Juutinen, A new proof for the equivalence of weak and viscosity solutions for the $p$-Laplace equation, Comm. Partial Differential Equations, 37 (2012), 934-946. doi: 10.1080/03605302.2011.615878.  Google Scholar

[26]

P. Juutinen, $p$-harmonic approximation of functions of least gradient, Indiana Univ. Math. J., 54 (2005), 1015-1030. doi: 10.1512/iumj.2005.54.2658.  Google Scholar

[27]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851. doi: 10.1007/s00208-006-0766-3.  Google Scholar

[28]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717. doi: 10.1137/S0036141000372179.  Google Scholar

[29]

B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Comm. Partial Differential Equations, 32 (2007), 1209-1224. doi: 10.1080/03605300601113043.  Google Scholar

[30]

B. Kawohl, Variations on the $p$-Laplacian, in Nonlinear elliptic partial differential equations, vol. 540 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2011, 35-46. doi: 10.1090/conm/540/10657.  Google Scholar

[31]

B. Kawohl, J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl., 97 (2012), 173-188. doi: 10.1016/j.matpur.2011.07.001.  Google Scholar

[32]

B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of some classes of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241-253.  Google Scholar

[33]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407. doi: 10.1002/cpa.20101.  Google Scholar

[34]

G. F. Lawler, Random Walk and the Heat Equation, vol. 55 of Student Mathematical Library, American Mathematical Society, Providence, RI, 2010.  Google Scholar

[35]

P. D. Lax, Functional Analysis, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York, 2002.  Google Scholar

[36]

E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 29-55. doi: 10.1007/s00030-006-4030-z.  Google Scholar

[37]

E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal., 29 (1998), 279-292. doi: 10.1137/S0036141095294067.  Google Scholar

[38]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[39]

P. Lindqvist, Notes on the $p$-Laplace equation, vol. 102 of Report, University of Jyväskylä Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, 2006.  Google Scholar

[40]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42 (2010), 2058-2081. doi: 10.1137/100782073.  Google Scholar

[41]

B. Merriman, J. K. Bence and S. J. Osher, Motion of multiple functions: a level set approach, J. Comput. Phys., 112 (1994), 334-363. doi: 10.1006/jcph.1994.1105.  Google Scholar

[42]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math., 99 (2004), 365-379. doi: 10.1007/s00211-004-0566-1.  Google Scholar

[43]

A. M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comp., 74 (2005), 1217-1230. doi: 10.1090/S0025-5718-04-01688-6.  Google Scholar

[44]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[45]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[46]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120. doi: 10.1215/00127094-2008-048.  Google Scholar

[47]

S. J. Ruuth and B. Merriman, Convolution-generated motion and generalized Huygens' principles for interface motion, SIAM J. Appl. Math., 60 (2000), 868-890. doi: 10.1137/S003613999833397X.  Google Scholar

[48]

P. Sternberg and W. P. Ziemer, Generalized motion by curvature with a Dirichlet condition, J. Differential Equations, 114 (1994), 580-600. doi: 10.1006/jdeq.1994.1162.  Google Scholar

[49]

N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, vol. 100 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1992.  Google Scholar

[50]

W. P. Ziemer, Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

G. Akagi, P. Juutinen and R. Kajikiya, Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Math. Ann., 343 (2009), 921-953. doi: 10.1007/s00208-008-0297-1.  Google Scholar

[2]

G. Akagi and K. Suzuki, Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Calc. Var. Partial Differential Equations, 31 (2008), 457-471. doi: 10.1007/s00526-007-0117-6.  Google Scholar

[3]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal., 123 (1993), 199-257. doi: 10.1007/BF00375127.  Google Scholar

[4]

M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity solutions and applications, vol. 1660 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1997, Lectures given at the 2nd C.I.M.E. Session held in Montecatini Terme, June 12-20, 1995, Edited by I. Capuzzo Dolcetta and P. L. Lions, Fondazione C.I.M.E.. [C.I.M.E. Foundation].  Google Scholar

[5]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283.  Google Scholar

[6]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500. doi: 10.1137/0732020.  Google Scholar

[7]

F. Catté, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets, SIAM J. Numer. Anal., 32 (1995), 1895-1909. doi: 10.1137/0732085.  Google Scholar

[8]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.  Google Scholar

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[10]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[11]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681.  Google Scholar

[12]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. II, Trans. Amer. Math. Soc., 330 (1992), 321-332. doi: 10.2307/2154167.  Google Scholar

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. III, J. Geom. Anal., 2 (1992), 121-150. doi: 10.1007/BF02921385.  Google Scholar

[14]

L. C. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557. doi: 10.1512/iumj.1993.42.42024.  Google Scholar

[15]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. IV, J. Geom. Anal., 5 (1995), 77-114. doi: 10.1007/BF02926443.  Google Scholar

[16]

Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40 (1991), 443-470. doi: 10.1512/iumj.1991.40.40023.  Google Scholar

[17]

Y. Giga, Surface Evolution Equations, vol. 99 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 2006, A level set approach.  Google Scholar

[18]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1985.  Google Scholar

[19]

A. Grigor'yan, Heat Kernel and Analysis on Manifolds, vol. 47 of AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI, 2009.  Google Scholar

[20]

D. Hartenstine and M. Rudd, Asymptotic statistical characterizations of $p$-harmonic functions of two variables, Rocky Mountain J. Math., 41 (2011), 493-504. doi: 10.1216/RMJ-2011-41-2-493.  Google Scholar

[21]

D. Hartenstine and M. Rudd, Statistical functional equations and $p$-harmonious functions, Adv. Nonlinear Stud., 13 (2013), 191-207.  Google Scholar

[22]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications.  Google Scholar

[23]

T. Ilmanen, P. Sternberg and W. P. Ziemer, Equilibrium solutions to generalized motion by mean curvature, J. Geom. Anal., 8 (1998), 845-858. Dedicated to the memory of Fred Almgren. doi: 10.1007/BF02922673.  Google Scholar

[24]

H. Ishii, G. E. Pires and P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan, 51 (1999), 267-308. doi: 10.2969/jmsj/05120267.  Google Scholar

[25]

V. Julin and P. Juutinen, A new proof for the equivalence of weak and viscosity solutions for the $p$-Laplace equation, Comm. Partial Differential Equations, 37 (2012), 934-946. doi: 10.1080/03605302.2011.615878.  Google Scholar

[26]

P. Juutinen, $p$-harmonic approximation of functions of least gradient, Indiana Univ. Math. J., 54 (2005), 1015-1030. doi: 10.1512/iumj.2005.54.2658.  Google Scholar

[27]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851. doi: 10.1007/s00208-006-0766-3.  Google Scholar

[28]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717. doi: 10.1137/S0036141000372179.  Google Scholar

[29]

B. Kawohl and N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Comm. Partial Differential Equations, 32 (2007), 1209-1224. doi: 10.1080/03605300601113043.  Google Scholar

[30]

B. Kawohl, Variations on the $p$-Laplacian, in Nonlinear elliptic partial differential equations, vol. 540 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2011, 35-46. doi: 10.1090/conm/540/10657.  Google Scholar

[31]

B. Kawohl, J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl., 97 (2012), 173-188. doi: 10.1016/j.matpur.2011.07.001.  Google Scholar

[32]

B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions of some classes of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241-253.  Google Scholar

[33]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407. doi: 10.1002/cpa.20101.  Google Scholar

[34]

G. F. Lawler, Random Walk and the Heat Equation, vol. 55 of Student Mathematical Library, American Mathematical Society, Providence, RI, 2010.  Google Scholar

[35]

P. D. Lax, Functional Analysis, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York, 2002.  Google Scholar

[36]

E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 29-55. doi: 10.1007/s00030-006-4030-z.  Google Scholar

[37]

E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal., 29 (1998), 279-292. doi: 10.1137/S0036141095294067.  Google Scholar

[38]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[39]

P. Lindqvist, Notes on the $p$-Laplace equation, vol. 102 of Report, University of Jyväskylä Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, 2006.  Google Scholar

[40]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42 (2010), 2058-2081. doi: 10.1137/100782073.  Google Scholar

[41]

B. Merriman, J. K. Bence and S. J. Osher, Motion of multiple functions: a level set approach, J. Comput. Phys., 112 (1994), 334-363. doi: 10.1006/jcph.1994.1105.  Google Scholar

[42]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math., 99 (2004), 365-379. doi: 10.1007/s00211-004-0566-1.  Google Scholar

[43]

A. M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comp., 74 (2005), 1217-1230. doi: 10.1090/S0025-5718-04-01688-6.  Google Scholar

[44]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[45]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[46]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120. doi: 10.1215/00127094-2008-048.  Google Scholar

[47]

S. J. Ruuth and B. Merriman, Convolution-generated motion and generalized Huygens' principles for interface motion, SIAM J. Appl. Math., 60 (2000), 868-890. doi: 10.1137/S003613999833397X.  Google Scholar

[48]

P. Sternberg and W. P. Ziemer, Generalized motion by curvature with a Dirichlet condition, J. Differential Equations, 114 (1994), 580-600. doi: 10.1006/jdeq.1994.1162.  Google Scholar

[49]

N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, vol. 100 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1992.  Google Scholar

[50]

W. P. Ziemer, Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[2]

C. Fabry, Raul Manásevich. Equations with a $p$-Laplacian and an asymmetric nonlinear term. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 545-557. doi: 10.3934/dcds.2001.7.545

[3]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[4]

Vitali Liskevich, Igor I. Skrypnik, Zeev Sobol. Estimates of solutions for the parabolic $p$-Laplacian equation with measure via parabolic nonlinear potentials. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1731-1744. doi: 10.3934/cpaa.2013.12.1731

[5]

Shanming Ji, Jingxue Yin, Yutian Li. Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2411-2439. doi: 10.3934/dcds.2018100

[6]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[7]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[8]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[9]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[10]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[11]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[12]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[13]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[14]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[15]

Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131

[16]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[17]

Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[20]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]