• Previous Article
    Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift
  • CPAA Home
  • This Issue
  • Next Article
    Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function
March  2015, 14(2): 397-406. doi: 10.3934/cpaa.2015.14.397

On the asymptotic stability of Volterra functional equations with vanishing delays

1. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St.Johns, Newfoundland, A1C 5S7

Received  November 2013 Revised  July 2014 Published  December 2014

We analyze the asymptotic stability of solutions of linear Volterra integral equations with general continuous convolution kernels and vanishing delays. The analysis is based on an extension of the variation-of-parameter formula for non-delay Volterra integral equations and on energy function techniques. The delay integral equations studied in this paper will be of interest in the (still open) stability analysis of numerical methods (e.g. collocation and Runge-Kutta-type methods) for Volterra integral equations with vanishing delays.
Citation: Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397
References:
[1]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003. doi: 10.1093/acprof:oso/9780198506546.001.0001.

[2]

H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type, Acta Numer., 13 (2004), 55-145. doi: 10.1017/CBO9780511569975.002.

[3]

H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Front. Math. China, 4 (2009), 3-22. doi: 10.1007/s11464-009-0001-0.

[4]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays, BIT Numer. Math., 50 (2010), 693-711. doi: 10.1007/s10543-010-0285-1.

[5]

A. Iserles, On the generalized pantograph functional differential equation, Europ. J. Appl. Math., 4 (1993), 1-38. doi: 10.1017/S0956792500000966.

[6]

A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, J. London Math. Soc., 51 (1995), 559-572. doi: 10.1112/jlms/51.3.559.

[7]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1970), 891-937.

show all references

References:
[1]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003. doi: 10.1093/acprof:oso/9780198506546.001.0001.

[2]

H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type, Acta Numer., 13 (2004), 55-145. doi: 10.1017/CBO9780511569975.002.

[3]

H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Front. Math. China, 4 (2009), 3-22. doi: 10.1007/s11464-009-0001-0.

[4]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays, BIT Numer. Math., 50 (2010), 693-711. doi: 10.1007/s10543-010-0285-1.

[5]

A. Iserles, On the generalized pantograph functional differential equation, Europ. J. Appl. Math., 4 (1993), 1-38. doi: 10.1017/S0956792500000966.

[6]

A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, J. London Math. Soc., 51 (1995), 559-572. doi: 10.1112/jlms/51.3.559.

[7]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1970), 891-937.

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432

[2]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[3]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[4]

Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 487-493. doi: 10.3934/naco.2020039

[5]

Kazuki Himoto, Hideaki Matsunaga. The limits of solutions of a linear delay integral equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3033-3048. doi: 10.3934/dcdsb.2020050

[6]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[7]

Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087

[8]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure and Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[9]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[10]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[11]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[12]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[13]

José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372

[14]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[15]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[16]

Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control and Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481

[17]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[18]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[19]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[20]

Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]