\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the growth of the energy of entire solutions to the vector Allen-Cahn equation

Abstract Related Papers Cited by
  • We prove that the energy over balls of entire, nonconstant bounded solutions to the vector Allen-Cahn equation grows faster than $(\ln R)^k R^{n-2}$, for any $k>0$, as the radius $R$ of the $n$-dimensional ball tends to infinity. This improves the growth rate of order $R^{n-2}$ if $n\geq 3$ and $\ln R$ if $n=2$ that follows from the general weak monotonicity formula. Moreover, our estimate may be considered as an approximation to the corresponding rate of order $R^{n-1}$ that is known to hold in the scalar case.
    Mathematics Subject Classification: Primary: 35J20, 35J91; Secondary: 35J47.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, Some basic facts on the system $\Delta u - W_u(u) = 0$, Proc. Amer. Math. Soc., 139 (2011), 153-162.doi: 10.1090/S0002-9939-2010-10453-7.

    [2]

    N. D. Alikakos and G. Fusco, Density estimates for vector minimizers and applications, preprint, arxiv:1403.7608.

    [3]

    S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 67-90.

    [4]

    P. W. Bates, G. Fusco and P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other complex symmetric structures, preprint, arxiv:1411.4008.

    [5]

    F. Bethuel, H. Brezis and G. Orlandi, Asymptotics of the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal., 186 (2001), 432-520.

    [6]

    L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Ration. Mech. Anal., 124 (1993), 355-379.doi: 10.1007/BF00375607.

    [7]

    L. Caffarelli, N. Garofalo and F. Segála, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.

    [8]

    L. Caffarelli and A. Córdoba, Uniform convergence of a singular perturbation problem, Comm. Pure Appl. Math., 48 (1995), 1-12.doi: 10.1002/cpa.3160480101.

    [9]

    L. A. Caffarelli and F-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.doi: 10.1090/S0894-0347-08-00593-6.

    [10]

    M. del Pino, P. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., 30 (2004), 1511-1527.doi: 10.1155/S1073792804133588.

    [11]

    A. Farina, Two results on entire solutions of Ginzburg-Landau system in higher dimensions, J. Funct. Anal., 214 (2004), 386-395.doi: 10.1016/j.jfa.2003.07.012.

    [12]

    A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal., 195 (2010), 1025-1058.doi: 10.1007/s00205-009-0227-8.

    [13]

    G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060.doi: doi:10.3934/cpaa.2014.13.1045.

    [14]

    N. Ghoussoub and B. Pass, Decoupling of De Giorgi-type systems via multi-marginal optimal transport, Comm. Partial Differential Equations, 39 (2014), 1032-1047.doi: 10.1080/03605302.2013.849730.

    [15]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, New York, 1983.

    [16]

    C. Gui and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations, Methods Appl. Anal., 15 (2008), 285-296.doi: 10.4310/MAA.2008.v15.n3.a3.

    [17]

    P. Mironescu and V. Radulescu, Periodic solutions of the equation $-\Delta v=v(1-|v|^2)$ in $\mathbbR$ and $\mathbbR^2$, Houston J. Math., 20 (1994), 653-669.

    [18]

    L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.doi: 10.1002/cpa.3160380515.

    [19]

    L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, in Partial Differential Equations and the Calculus of Variations, Essays in honor of Ennio De Giorgi, Vol. 2 (eds. F. Colombini, A. Marino and L. Modica), Birkhäuser, (1989), 843-850.

    [20]

    T. Riviére, Asymptotic analysis for the Ginzburg-Landau equations, Bollettino dell'Unione Matematica Italiana 2-B, 3 (1999), 537-575.

    [21]

    D. Smets, PDE analysis of concentrating energies for the Ginzburg-Landau equation, in Topics on Concentration Phenomena and Problems with Multiple Scales (eds. A. Braides and V. C. Piat), Springer, (2006), 293-314.doi: 10.1007/978-3-540-36546-4_8.

    [22]

    P. Smyrnelis, Gradient estimates for semilinear elliptic systems and other related results, preprint, arxiv:1401.4847.

    [23]

    R. Sperb, Maximum Principles and their Applications, Academic Press, New York, 1981.

    [24]

    C. Sourdis, Optimal energy growth lower bounds for a class of solutions to the vectorial Allen-Cahn equation, preprint, arxiv:1402.3844v2.

    [25]

    C. Sourdis, A new monotonicity formula for solutions to the elliptic system $\Delta u=\nabla W(u)$, preprint, arXiv:1402.6237.

    [26]

    C. Sourdis, Energy estimates for minimizers to a class of elliptic systems of Allen-Cahn type and the Liouville property, preprint, arxiv:1403.1538.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return