\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue

Abstract Related Papers Cited by
  • For a given bounded Lipschitz set $\Omega$, we consider a Steklov--type eigenvalue problem for the Laplacian operator whose solutions provide extremal functions for the compact embedding $H^1(\Omega)\hookrightarrow L^2(\partial \Omega)$. We prove that a conjectured reverse Faber--Krahn inequality holds true at least in the class of Lipschitz sets which are ``close'' to a ball in a Hausdorff metric sense. The result implies that among sets of prescribed measure, balls are local minimizers of the embedding constant.
    Mathematics Subject Classification: Primary: 46E35, 35P15; Secondary: 28A75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964.

    [2]

    E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Communications in Mathematical Physics, 322 (2013), 515-557.doi: 10.1007/s00220-013-1733-y.

    [3]

    F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs AMS, 4 (1976).

    [4]

    F. Andreu, J. M. Mazón, and J. D. Rossi, The best constant for the Sobolev trace embedding from $W^{1,1}(\Omega)$ into $L^1(\partial\Omega)$, Nonlinear Anal., 59 (2004), 1125-1145.doi: 10.1016/j.na.2004.07.051.

    [5]

    M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., 76, Part 1, Amer. Math. Soc., Providence, RI, 2007, 105-139.doi: 10.1090/pspum/076.1/2310200.

    [6]

    M. Bareket, On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal., 8 (1977), 280-287.

    [7]

    M. H. Bossel, Membranes élastiquement liées: inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys., 39 (1988), 733-742.doi: 10.1007/BF00948733.

    [8]

    B. Brandolini, C. Nitsch and C. Trombetti, An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit, Arch. Math., 94 (2010), 391-400.doi: 10.1007/s00013-010-0102-8.

    [9]

    L. Brasco, G. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form, preprint, arXiv:1306.0392.

    [10]

    F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech., 8 (2001), 69-71.

    [11]

    F. Brock and D. Daners, Conjecture concerning a Faber-Krahn inequality for Robin problems, In Mini-Workshop: Shape Analysis for Eigenvalues (Organized by D. Bucur, G. Buttazzo and A. Henrot), Oberwolfach Rep., 4 (2007), 1022-1023.doi: 10.4171/OWR/2007/18.

    [12]

    D. Bucur and D. Daners, An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. Partial Differential Equations, 37 (2010), 75-86.doi: 10.1007/s00526-009-0252-3.

    [13]

    A. Cianchi, A sharp trace inequality for functions of bounded variation in the ball, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1179-1191.doi: 10.1017/S0308210511000758.

    [14]

    A. Cianchi, V. Ferone, C. Nitsch and C. Trombetti, Balls minimize trace constants in BV, preprint, arXiv:1301.5770.

    [15]

    M. Cicalese and G. P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal., 206 (2012), 617-643.doi: 10.1007/s00205-012-0544-1.

    [16]

    D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann., 333 (2006), 767-785.doi: 10.1007/s00208-006-0753-8.

    [17]

    D. Daners, Principal eigenvalues for generalized indefinite Robin problems, Potential Anal., 38 (2013), 1047-1069.doi: 10.1007/s11118-012-9306-9.

    [18]

    D. Daners, Krahn's proof of the Rayleigh conjecture revisited, Arch. Math., 96 (2011), 187-199.doi: 10.1007/s00013-010-0218-x.

    [19]

    M. del Pino and C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Differential Equations, 26 (2001), 2189-2210.doi: 10.1081/PDE-100107818.

    [20]

    L. Esposito, V. Ferone, B. Kawohl, C. Nitsch and C. Trombetti, The longest shortest fence and sharp Poincaré-Sobolev inequalities, Arch. Rational. Mech. Anal., 206 (2012), 821-851.doi: 10.1007/s00205-012-0545-0.

    [21]

    L. Esposito, C. Nitsch and C. Trombetti, Best constants in Poincaré inequalities for convex domains, J. Convex Anal., 20(2013), 253-264.

    [22]

    G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Münch. Ber., (1923), 169-172.

    [23]

    J. Fernández Bonder, E. Lami Dozo, and J. D. Rossi, Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 21 (2004), 795-805.doi: 10.1016/j.anihpc.2003.09.005.

    [24]

    J. Fernández Bonder and J. D. Rossi, Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains, Comm. Pure Appl. Anal., 1 (2002), 359-378.doi: 10.3934/cpaa.2002.1.359.

    [25]

    J. Fernández Bonder and J. D. Rossi, On the existence of extremals for the Sobolev trace embedding theorem with critical exponent, Bull. London Math. Soc., 37 (2005), 119-125.doi: 10.1112/S0024609304003819.

    [26]

    V. Ferone, C. Nitsch and C. Trombetti, A remark on optimal weighted Poincaré inequalities for convex domains, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 23 (2012), 467-475.doi: 10.4171/RLM/640.

    [27]

    A. Figalli and F. Maggi, On the isoperimetric problem for radial log-convex densities, Calc. Var. Partial Differential Equations, 48 (2013), 447-489.doi: 10.1007/s00526-012-0557-5.

    [28]

    B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in $R^n$, Trans. Amer. Math. Soc., 314 (1989), 619-638.doi: 10.2307/2001401.

    [29]

    N. Fusco, F. Maggi and A. Pratelli, Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 51-71.

    [30]

    A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.

    [31]

    B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985.

    [32]

    S. Kesavan, Symmetrization & Applications, Series in Analysis, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.doi: 10.1142/9789812773937.

    [33]

    E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 94 (1925), 97-100.doi: 10.1007/BF01208645.

    [34]

    F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics no. 135, Cambridge University Press, 2012.doi: 10.1017/CBO9781139108133.

    [35]

    F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities, J. Geom. Anal., 15 (2005), 83-121.doi: 10.1007/BF02921860.

    [36]

    S. Martinez and J. D. Rossi, Isolation and simplicity for the first eigenvalue of the p-laplacian with a nonlinear boundary condition, Abst. Appl. Anal., 7 (2002), 287-293.doi: 10.1155/S108533750200088X.

    [37]

    V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-15564-2.

    [38]

    C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer-Verlag, Berlin-New York, 1966.

    [39]

    C. Nitsch, An isoperimetric result for the fundamental frequency via domain derivative, Calc. Var. Partial Differential Equations, 49 (2014), 323-335.doi: 10.1007/s00526-012-0584-2.

    [40]

    J. D. Rossi, First variations of the best Sobolev trace constant with respect to the domain, Canad. Math. Bull., 51 (2008), 140-145.doi: 10.4153/CMB-2008-016-5.

    [41]

    G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal., 3 (1954), 343-356.

    [42]

    I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math., 334 (1982), 27-39.doi: 10.1515/crll.1982.334.27.

    [43]

    I. Tamanini, Regularity results for almost minimal oriented hypersurfaces in $R^N$, Quaderni del Dipartimento di Matematica dell'Università del Salento, 1, 1984; available for download at http://siba-ese.unile.it/index.php/quadmat.

    [44]

    D. Valtorta, Sharp estimate on the first eigenvalue of the $p$-Laplacian, Nonlinear Anal., 75 (2012), 4974-4994.doi: 10.1016/j.na.2012.04.012.

    [45]

    H. F. Weinberger, An isoperimetric inequality for the $N$ dimensional free membrane problem, J. Rational Mech. Anal., 5 (1956), 633-636.

    [46]

    R. Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal., 3 (1954), 745-753.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return