\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain

Abstract Related Papers Cited by
  • In this paper, we prove some logarithmically improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain.
    Mathematics Subject Classification: 35Q30, 76D03, 76D09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. F. Fournier, Sobolev Spaces, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003.

    [2]

    H. Beir ao da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), 149-166.doi: 10.1512/iumj.1987.36.36008.

    [3]

    H. Beir ao da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary condition. An $L^p$ theory, J. Math. Fluid Mech., 12 (2010), 397-411.doi: 10.1007/s00021-009-0295-4.

    [4]

    L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations, Differential Integral Equations, 15 (2002), 1129-1137.

    [5]

    L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 209-224.doi: 10.1007/s11565-009-0076-2.

    [6]

    L. C. Berselli and R. Manfrin, On a theorem by Sohr for the Navier-Stokes equations, J. Evol. Equ., 4 (2004), 193-211.doi: 10.1007/s00028-003-1135-2.

    [7]

    L. C. Berselli and S. Spirito, On the Boussinesq system: Regularity criteria and singular limits, Methods Appl. Anal., 18 (2011), 391-416.doi: 10.4310/MAA.2011.v18.n4.a3.

    [8]

    S. Chandrasekhar, Liquid Crystals, Cambridge University Press, 2nd edition, 1992.

    [9]

    R. Danchin, Density-dependent incompressible fluids in bounded domains, J. Math. Fluid Mech., 8 (2006), 333-381.doi: 10.1007/s00021-004-0147-1.

    [10]

    J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.

    [11]

    J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations, Kinet. Relat. Models, 6 (2013), 545-556.doi: 10.3934/krm.2013.6.545.

    [12]

    J. Fan, H. Gao and B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system, J. Math. Anal. Appl., 363 (2010), 29-37.doi: 10.1016/j.jmaa.2009.07.047.

    [13]

    J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations, J. Math. Fluid Mech., 13 (2011), 557-571.doi: 10.1007/s00021-010-0039-5.

    [14]

    J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553-568.doi: 10.1088/0951-7715/22/3/003.

    [15]

    F. Guillén-González, M. A. Rojas-Medar and M. A. Rodríguez-Bellido, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model, Math. Nachr., 282 (2009), 846-867.doi: 10.1002/mana.200610776.

    [16]

    H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.doi: 10.1137/S0036141004442197.

    [17]

    F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810.

    [18]

    X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals, Trans Amer. Math. Soc., to appear, arXiv:1202.1011 v1.

    [19]

    F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math, 48 (1995), 501-537.doi: 10.1002/cpa.3160480503.

    [20]

    A. Lunardi, Interpolation Theory, Lecture Notes. Scuola Normale Superiore di Pisa (New Series), 2nd ed., Edizioni della Normale, Pisa, 2009.

    [21]

    T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow, SIAM J. Math. Anal., 34 (2003), 1318-1330.doi: 10.1137/S0036141001395868.

    [22]

    T. Ogawa and Y. Taniuchi, A note on blow-up criterion to the 3D Euler equations in a bounded domain, J. Diff. Equations, 190 (2003), 39-63.doi: 10.1016/S0022-0396(03)00013-5.

    [23]

    H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1 (2001), 441-467.doi: 10.1007/PL00001382.

    [24]

    H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.doi: 10.1007/978-3-0346-0416-1.

    [25]

    Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces, J. Math. Anal. Appl., 356 (2009), 498-501.doi: 10.1016/j.jmaa.2009.03.038.

    [26]

    Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708doi: 10.1515/form.2011.079.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(179) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return