• Previous Article
    Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$
  • CPAA Home
  • This Issue
  • Next Article
    Hopf bifurcation in an age-structured population model with two delays
March  2015, 14(2): 677-693. doi: 10.3934/cpaa.2015.14.677

Refined blow-up results for nonlinear fourth order differential equations

1. 

Dipartimento di Matematica Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano

2. 

School of Mathematics, Trinity College, Dublin 2

Received  May 2014 Revised  October 2014 Published  December 2014

We study a class of nonlinear fourth order differential equations which arise as models of suspension bridges. When it comes to power-like nonlinearities, it is known that solutions may blow up in finite time, if the initial data satisfy some positivity assumption. We extend this result to more general nonlinearities allowing exponential growth and to a wider class of initial data. We also give some hints on how to prevent blow-up.
Citation: Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677
References:
[1]

C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase-space analogy of an elastic strut, Eur. J. Appl. Math., 3 (1992), 97-114. doi: 10.1017/S0956792500000735.

[2]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Diff. Eq., 251 (2011), 2696-2727. doi: 10.1016/j.jde.2011.05.036.

[3]

D. Bonheure, Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 319-340. doi: 10.1016/S0294-1449(03)00037-4.

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Diff. Eq., Vol. III (2006), Elsevier Science, 103-202. doi: 10.1016/S1874-5725(06)80006-4.

[5]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Engineering and Structural Dynamics, 23 (1994), 1351-1367.

[6]

F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Diff. Equ., 211 (2013), 1-47.

[7]

F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936. doi: 10.1007/s00208-005-0748-x.

[8]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations, Nonlinear Analysis, 74 (2011), 6696-6711. doi: 10.1016/j.na.2011.06.049.

[9]

F. Gazzola and R. Pavani, Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges, IABMAS12, $6^{th}$ International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability, 3089-3093, Stresa 2012, Biondini & Frangopol (Editors), Taylor & Francis Group, London (2012). doi: 10.1016/j.na.2011.06.049.

[10]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Rat. Mech. Anal., 207 (2013), 717-752. doi: 10.1007/s00205-012-0569-5.

[11]

G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Localisation and the dynamical phase-space analogy, Proc. Roy. Soc. London A, 425 (1989), 245-267.

[12]

I. V. Ivanov, D. S. Velchev, M. Kneć and T. Sadowski, Computational models of laminated glass plate under transverse static loading,, In \emph{Shell-like Structures, (). 

[13]

P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations, Nonlinear Analysis, 73 (2010), 367-373. doi: 10.1016/j.na.2010.03.025.

[14]

W. Lacarbonara, Nonlinear Structural Mechanics, Springer, 2013. doi: 10.1007/978-1-4419-1276-3.

[15]

L. A. Peletier and W. C. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and their Applications 45, Birkhäuser Boston Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0135-9.

[16]

M. A. Peletier, Sequential buckling: a variational analysis, SIAM J. Math. Anal., 32 (2001), 1142-1168. doi: 10.1137/S0036141099359925.

[17]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound and Vibration, 307 (2007), 894-905.

show all references

References:
[1]

C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase-space analogy of an elastic strut, Eur. J. Appl. Math., 3 (1992), 97-114. doi: 10.1017/S0956792500000735.

[2]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Diff. Eq., 251 (2011), 2696-2727. doi: 10.1016/j.jde.2011.05.036.

[3]

D. Bonheure, Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 319-340. doi: 10.1016/S0294-1449(03)00037-4.

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Diff. Eq., Vol. III (2006), Elsevier Science, 103-202. doi: 10.1016/S1874-5725(06)80006-4.

[5]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Engineering and Structural Dynamics, 23 (1994), 1351-1367.

[6]

F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Diff. Equ., 211 (2013), 1-47.

[7]

F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936. doi: 10.1007/s00208-005-0748-x.

[8]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations, Nonlinear Analysis, 74 (2011), 6696-6711. doi: 10.1016/j.na.2011.06.049.

[9]

F. Gazzola and R. Pavani, Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges, IABMAS12, $6^{th}$ International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability, 3089-3093, Stresa 2012, Biondini & Frangopol (Editors), Taylor & Francis Group, London (2012). doi: 10.1016/j.na.2011.06.049.

[10]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Rat. Mech. Anal., 207 (2013), 717-752. doi: 10.1007/s00205-012-0569-5.

[11]

G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Localisation and the dynamical phase-space analogy, Proc. Roy. Soc. London A, 425 (1989), 245-267.

[12]

I. V. Ivanov, D. S. Velchev, M. Kneć and T. Sadowski, Computational models of laminated glass plate under transverse static loading,, In \emph{Shell-like Structures, (). 

[13]

P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations, Nonlinear Analysis, 73 (2010), 367-373. doi: 10.1016/j.na.2010.03.025.

[14]

W. Lacarbonara, Nonlinear Structural Mechanics, Springer, 2013. doi: 10.1007/978-1-4419-1276-3.

[15]

L. A. Peletier and W. C. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and their Applications 45, Birkhäuser Boston Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0135-9.

[16]

M. A. Peletier, Sequential buckling: a variational analysis, SIAM J. Math. Anal., 32 (2001), 1142-1168. doi: 10.1137/S0036141099359925.

[17]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound and Vibration, 307 (2007), 894-905.

[1]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108

[2]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[3]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[4]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[5]

P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 785-791. doi: 10.3934/dcdss.2014.7.785

[6]

Alan E. Lindsay. An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 189-215. doi: 10.3934/dcdsb.2014.19.189

[7]

Elvise Berchio, Filippo Gazzola. The role of aerodynamic forces in a mathematical model for suspension bridges. Conference Publications, 2015, 2015 (special) : 112-121. doi: 10.3934/proc.2015.0112

[8]

Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879

[9]

Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial and Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153

[10]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[11]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[12]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[13]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[14]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[15]

Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564

[16]

Marco Donatelli, Luca Vilasi. Existence of multiple solutions for a fourth-order problem with variable exponent. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2471-2481. doi: 10.3934/dcdsb.2021141

[17]

Quang-Minh Tran, Hong-Danh Pham. Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4521-4550. doi: 10.3934/dcdss.2021135

[18]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[19]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

[20]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]