\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Refined blow-up results for nonlinear fourth order differential equations

Abstract Related Papers Cited by
  • We study a class of nonlinear fourth order differential equations which arise as models of suspension bridges. When it comes to power-like nonlinearities, it is known that solutions may blow up in finite time, if the initial data satisfy some positivity assumption. We extend this result to more general nonlinearities allowing exponential growth and to a wider class of initial data. We also give some hints on how to prevent blow-up.
    Mathematics Subject Classification: 34A12, 65L05, 34C10, 35B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase-space analogy of an elastic strut, Eur. J. Appl. Math., 3 (1992), 97-114.doi: 10.1017/S0956792500000735.

    [2]

    E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Diff. Eq., 251 (2011), 2696-2727.doi: 10.1016/j.jde.2011.05.036.

    [3]

    D. Bonheure, Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 319-340.doi: 10.1016/S0294-1449(03)00037-4.

    [4]

    D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Diff. Eq., Vol. III (2006), Elsevier Science, 103-202.doi: 10.1016/S1874-5725(06)80006-4.

    [5]

    J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Engineering and Structural Dynamics, 23 (1994), 1351-1367.

    [6]

    F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Diff. Equ., 211 (2013), 1-47.

    [7]

    F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905-936.doi: 10.1007/s00208-005-0748-x.

    [8]

    F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations, Nonlinear Analysis, 74 (2011), 6696-6711.doi: 10.1016/j.na.2011.06.049.

    [9]

    F. Gazzola and R. Pavani, Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges, IABMAS12, $6^{th}$ International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability, 3089-3093, Stresa 2012, Biondini & Frangopol (Editors), Taylor & Francis Group, London (2012).doi: 10.1016/j.na.2011.06.049.

    [10]

    F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Rat. Mech. Anal., 207 (2013), 717-752.doi: 10.1007/s00205-012-0569-5.

    [11]

    G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Localisation and the dynamical phase-space analogy, Proc. Roy. Soc. London A, 425 (1989), 245-267.

    [12]

    I. V. Ivanov, D. S. Velchev, M. Kneć and T. Sadowski, Computational models of laminated glass plate under transverse static loading, In Shell-like Structures, Non-classical Theories and Applications (H. Altenbach and V. Eremeyev eds.),

    [13]

    P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations, Nonlinear Analysis, 73 (2010), 367-373.doi: 10.1016/j.na.2010.03.025.

    [14]

    W. Lacarbonara, Nonlinear Structural Mechanics, Springer, 2013.doi: 10.1007/978-1-4419-1276-3.

    [15]

    L. A. Peletier and W. C. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and their Applications 45, Birkhäuser Boston Inc., Boston, MA, 2001.doi: 10.1007/978-1-4612-0135-9.

    [16]

    M. A. Peletier, Sequential buckling: a variational analysis, SIAM J. Math. Anal., 32 (2001), 1142-1168.doi: 10.1137/S0036141099359925.

    [17]

    R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound and Vibration, 307 (2007), 894-905.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return