-
Previous Article
Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions"
- CPAA Home
- This Issue
-
Next Article
Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$
Instability of multi-spot patterns in shadow systems of reaction-diffusion equations
1. | Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan |
2. | Department of Mathematical Sciences Based on Modeling and Analysis, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan |
3. | Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 |
References:
[1] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[2] |
H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$, Indiana Univ. Math. J., 30 (1981), 141-157. |
[3] |
X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system, Adv. Differential Equations, 6 (2001), 847-872.
doi: 10.1137/S0036141099364954. |
[4] |
A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 50 (2001), 443-507. |
[5] |
S.-I. Ei, K. Ikeda and Y. Miyamoto, Dynamics of a boundary spike for the shadow Gierer-Meinhardt system, Commun. Pure Appl. Anal., 11 (2012), 115-145. |
[6] |
L. C. Evans, Partial Differential Equations, vol.19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998. |
[7] |
C. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.
doi: 10.1215/S0012-7094-96-08423-9. |
[8] |
K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system, Netw. Heterog. Media, 8 (2013), 291-325.
doi: 10.3934/nhm.2013.8.291. |
[9] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. |
[10] |
K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation, Commun. Pure Appl. Anal., 7 (2008), 1443-1482.
doi: 10.3934/cpaa.2008.7.1443. |
[11] |
C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, in Calculus of variations and partial differential equations (Trento, 1986), vol.1340 of Lecture Notes in Math., Springer, Berlin, (1988), 160-174.
doi: 10.1007/BFb0082894. |
[12] |
Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508.
doi: 10.1016/j.jde.2006.03.015. |
[13] |
W.-M. Ni, P. PolJáčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069 (electronic). |
[14] |
W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[15] |
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.
doi: 10.1137/0513037. |
[16] |
I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208-249.
doi: 10.1016/0022-0396(86)90119-1. |
[17] |
T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional linearized eigenvalue problems, Commun. Pure Appl. Anal., 7 (2008), 745-763.
doi: 10.3934/cpaa.2008.7.745. |
[18] |
J. Wei, Existence, stability and metastability of point condensation patterns generated by the Gray-Scott system, Nonlinearity, 12 (1999), 593-616.
doi: 10.1088/0951-7715/12/3/011. |
[19] |
J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $R^2$, Phys. D, 176 (2003), 147-180.
doi: 10.1016/S0167-2789(02)00743-1. |
[20] |
J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[21] |
J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$, Methods Appl. Anal., 14 (2007), 119-163.
doi: 10.4310/MAA.2007.v14.n2.a2. |
show all references
References:
[1] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[2] |
H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$, Indiana Univ. Math. J., 30 (1981), 141-157. |
[3] |
X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system, Adv. Differential Equations, 6 (2001), 847-872.
doi: 10.1137/S0036141099364954. |
[4] |
A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 50 (2001), 443-507. |
[5] |
S.-I. Ei, K. Ikeda and Y. Miyamoto, Dynamics of a boundary spike for the shadow Gierer-Meinhardt system, Commun. Pure Appl. Anal., 11 (2012), 115-145. |
[6] |
L. C. Evans, Partial Differential Equations, vol.19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998. |
[7] |
C. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.
doi: 10.1215/S0012-7094-96-08423-9. |
[8] |
K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system, Netw. Heterog. Media, 8 (2013), 291-325.
doi: 10.3934/nhm.2013.8.291. |
[9] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. |
[10] |
K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation, Commun. Pure Appl. Anal., 7 (2008), 1443-1482.
doi: 10.3934/cpaa.2008.7.1443. |
[11] |
C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, in Calculus of variations and partial differential equations (Trento, 1986), vol.1340 of Lecture Notes in Math., Springer, Berlin, (1988), 160-174.
doi: 10.1007/BFb0082894. |
[12] |
Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508.
doi: 10.1016/j.jde.2006.03.015. |
[13] |
W.-M. Ni, P. PolJáčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069 (electronic). |
[14] |
W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[15] |
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.
doi: 10.1137/0513037. |
[16] |
I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208-249.
doi: 10.1016/0022-0396(86)90119-1. |
[17] |
T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional linearized eigenvalue problems, Commun. Pure Appl. Anal., 7 (2008), 745-763.
doi: 10.3934/cpaa.2008.7.745. |
[18] |
J. Wei, Existence, stability and metastability of point condensation patterns generated by the Gray-Scott system, Nonlinearity, 12 (1999), 593-616.
doi: 10.1088/0951-7715/12/3/011. |
[19] |
J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $R^2$, Phys. D, 176 (2003), 147-180.
doi: 10.1016/S0167-2789(02)00743-1. |
[20] |
J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[21] |
J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$, Methods Appl. Anal., 14 (2007), 119-163.
doi: 10.4310/MAA.2007.v14.n2.a2. |
[1] |
Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373 |
[2] |
Yasumasa Nishiura, Takashi Teramoto, Xiaohui Yuan. Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system. Communications on Pure and Applied Analysis, 2012, 11 (1) : 307-338. doi: 10.3934/cpaa.2012.11.307 |
[3] |
Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191 |
[4] |
Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 |
[5] |
Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369 |
[6] |
Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 |
[7] |
M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 |
[8] |
Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041 |
[9] |
Shuangquan Xie, Theodore Kolokolnikov. Oscillations of many interfaces in the near-shadow regime of two-component reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 959-975. doi: 10.3934/dcdsb.2016.21.959 |
[10] |
Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106 |
[11] |
Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030 |
[12] |
Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010 |
[13] |
Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516 |
[14] |
Xiao Wu, Mingkang Ni. Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3249-3266. doi: 10.3934/dcdss.2020341 |
[15] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005 |
[16] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[17] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[18] |
Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1567-1587. doi: 10.3934/dcdss.2020089 |
[19] |
Ming Mei, Yau Shu Wong. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 743-752. doi: 10.3934/mbe.2009.6.743 |
[20] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]