\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

General types of spherical mean operators and $K$-functionals of fractional orders

Abstract Related Papers Cited by
  • We design a general type of spherical mean operators and employ them to approximate $L_p$ class functions. We show that optimal orders of approximation are achieved via appropriately defined K-functionals of fractional orders.
    Mathematics Subject Classification: Primary: 40A05, 41A36; Secondary: 41A60, 45C05, 47A75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C., 1964.

    [2]

    G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, No. 71. Cambridge University Press, Cambridge, 1999.doi: 10.1017/CBO9781107325937.

    [3]

    W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964.

    [4]

    E. Belinsky, F. Dai and Z. Ditzian, Multivariate approximating averages, J. Approx. Theory 125, 1 (2003), 85-105.doi: 10.1016/j.jat.2003.09.005.

    [5]

    W. O. Bray, Growth and integrability of Fourier transforms on Euclidean spaces, to appear in J. Fourier Analysis and Applications, arXiv:1308.2268. doi: 10.1007/s00041-014-9354-1.

    [6]

    W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal. 255, 9 (2008), 2265-2285.doi: 10.1016/j.jfa.2008.06.017.

    [7]

    D. Chen, V. A. Menegatto and X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proceedings of the American Mathematical Society 131, 9 (2003), 2733-2740.doi: 10.1090/S0002-9939-03-06730-3.

    [8]

    F. Dai and Z. Ditzian, Combinations of multivariate averages, J. Approx. Theory 131, 2 (2004), 268-283.doi: 10.1016/j.jat.2004.10.003.

    [9]

    Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81, 4 (1998), 323-348.doi: 10.1023/A:1006554907440.

    [10]

    Z. Ditzian, Smoothness of a function and the growth of its Fourier transform or its Fourier coefficients, J. Approx. Theory 162, 5 (2010), 980-986.doi: 10.1016/j.jat.2009.11.003.

    [11]

    Z. Ditzian, Relating smoothness to expressions involving Fourier coefficient or to a Fourier transform, J. Approx. Theory 164, 10 (2012), 1369-1389.doi: 10.1016/j.jat.2012.05.004.

    [12]

    R. E. Edwards, Fourier Series: A Modern Introduction, Vol. II, Holt, Rinehart and Winston, INC., New York, 1967.

    [13]

    D. Gioev, Moduli of continuity and average decay of Fourier transforms: two sided estimates, in Integrable Systems and Random Matrices (Cont. Math. 458), Amer. Math. Soc., Providence, RI, (2008), 377-392.doi: 10.1090/conm/458/08948.

    [14]

    D. Gorbachev and S. Tikhonov, Moduli of smoothness and growth properties of Fourier transforms: two sided estimates, J. Approx. Theory 164, 9 (2012), 1283-1312.doi: 10.1016/j.jat.2012.05.017.

    [15]

    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6nd edition, translated from the Russian sixth edition, translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, Academic Press, Inc., San Diego, CA, 2000.

    [16]

    F. J. Narcowich, X. Sun and J. D. Ward, Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math. 27, 1 (2007), 107-124.doi: 10.1007/s10444-005-7506-1.

    [17]

    I. J. Schoenberg, Metric spaces and completely monotone functions, The Annals of Mathematics 39, 4 (1938), 811-841.doi: 10.2307/1968466.

    [18]

    I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J., 9 (1988), 96-108.

    [19]

    J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-0873-0.

    [20]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

    [21]

    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.

    [22]

    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 3nd edition, Chelsea Publishing Co., New York, 1986.

    [23]

    C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems - B, 4 (2004), 1065-1089.doi: 10.3934/dcdsb.2004.4.1065.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return