Citation: |
[1] |
P. J. Angulo, Nonlinear stability of periodic travelling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations, J. Differential Equations, 235 (2007), 1-30.doi: 10.1016/j.jde.2007.01.003. |
[2] |
T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972), 153-183. |
[3] |
J. L. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A, 344 (1975), 363-374. |
[4] |
J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601. |
[5] |
T. J. Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations, SIAM J. Math. Anal., 33 (2002), 1356-1378.doi: 10.1137/S0036141099361494. |
[6] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, 1971. |
[7] |
T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. |
[8] |
L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend, Circ. Mat. Palermo., 22 (1906), 117-135 [in Italian]. |
[9] |
Y. Fukumoto, Motion of a curved vortex filament: higher-order asymptotics, In Proc. of IUTAM Symposium on Geometry and Statistics of Turbulence (eds. T. Kambe, T. Nakano and T. Miyauchi). (2001), 211-216, Kluwer.doi: 10.1007/978-94-015-9638-1_25. |
[10] |
Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part I. A higher-order asymptotic formula for the velocity, J. Fluid. Mech., 417 (2000), 1-45.doi: 10.1017/S0022112000008995. |
[11] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.doi: 10.1016/0022-1236(87)90044-9. |
[12] |
H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477-485. |
[13] |
S. M. Hoseini and T. R. Marchant, Solitary wave interaction for a higher-order nonlinear Schrödinger equation, IMA J. Appl. Math., 72 (2007), 206-222.doi: 10.1093/imamat/hxl034. |
[14] |
Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Comm. Partial Differential Equations, 32 (2007), 1493-1510.doi: 10.1080/03605300701629385. |
[15] |
C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. math J., 40 (1991), 33-69.doi: 10.1512/iumj.1991.40.40003. |
[16] |
C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math J., 71 (1993), 1-21.doi: 10.1215/S0012-7094-93-07101-3. |
[17] |
S. Kida, A vortex filament moving without change of form, J. Fluid Mech., 112 (1981), 397-409.doi: 10.1017/S0022112081000475. |
[18] |
S. Kwon, On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations, 245 (2008), 2627-2659.doi: 10.1016/j.jde.2008.03.020. |
[19] |
J. Langer and R. Perline, Poisson geometry of the filament equation, J. Nonlinear Sci., 1 (1991), 71-93.doi: 10.1007/BF01209148. |
[20] |
S. Levandosky, Stability of solitary waves of a fifth-order water wave model, Phys. D, 227 (2007), 162-172.doi: 10.1016/j.physd.2007.01.006. |
[21] |
M. Maeda and J. Segata, Existence and stability of standing waves of fourth order nonlinear Schrödinger type equation related to vortex filament, Funkcial. Ekvac., 54 (2011), 1-14.doi: 10.1619/fesi.54.1. |
[22] |
A. Moyua and L. Vega, Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations, Bull. Lond. Math. Soc., 40 (2008), 117-128.doi: 10.1112/blms/bdm096. |
[23] |
J. Segata, Refined energy inequality with application to well-posedness for the fourth order nonlinear Schrödinger type equation on torus, J. Differential Eq., 252 (2012), 5994-6011.doi: 10.1016/j.jde.2012.02.016. |
[24] |
M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.doi: 10.1137/0516034. |
[25] |
M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.doi: 10.1002/cpa.3160390103. |