• Previous Article
    No--flux boundary value problems with anisotropic variable exponents
  • CPAA Home
  • This Issue
  • Next Article
    Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves
May  2015, 14(3): 861-880. doi: 10.3934/cpaa.2015.14.861

Admissibility, a general type of Lipschitz shadowing and structural stability

1. 

Department of Mathematics, University of Rijeka, 51000 Rijeka

Received  May 2014 Revised  October 2014 Published  March 2015

For a general one-sided nonautonomous dynamics defined by a sequence of linear operators, we consider the notion of a uniform exponential dichotomy and we characterize it completely in terms of the admissibility of a large class of function spaces. We apply those results to show that structural stability of a diffeomorphism is equivalent to a very general type of Lipschitz shadowing property. Our results extend those in [37] in various directions.
Citation: Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861
References:
[1]

L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies with respect to a sequence of norms and admissibility, Int. J. Math., 25, 1450024 (2014), 20 pages. doi: 10.1142/S0129167X14500244.  Google Scholar

[2]

L. Barreira, D. Dragičević and C. Valls, Nonuniform hyperbolicity and admissibility, Adv. Nonlinear Stud., 14 (2014), 791-811.  Google Scholar

[3]

L. Barreira, D. Dragičević and C. Valls, Strong and weak $(L^p,L^q)$-admissibility, Bull. Sci. Math., 138 (2014), 721-741. doi: 10.1016/j.bulsci.2013.11.005.  Google Scholar

[4]

L. Barreira, D. Dragičević and C. Valls, Admissibility on the half line for evolution families,, \emph{J. Anal. Math.}, ().   Google Scholar

[5]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lect. Notes. in Math. 1926, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[6]

A. Ben-Artzi and I. Gohberg, Dichotomy of systems and invertibility of linear ordinary differential operators, in Time-Variant Systems and Interpolation, Oper. Theory Adv. Appl., 56, Birkhäuser, 1992, pp. 90-119.  Google Scholar

[7]

A. Ben-Artzi, I. Gohberg and M. Kaashoek, Invertibility and dichotomy of differential operators on a half-line, J. Dynam. Differential Equations, 5 (1993), 1-36. doi: 10.1007/BF01063733.  Google Scholar

[8]

C. Chicone and Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs 70, Amer. Math. Soc., 1999. doi: 10.1090/surv/070.  Google Scholar

[9]

C. Coffman and J. Schäffer, Dichotomies for linear difference equations, Math. Ann., 172 (1967), 139-166.  Google Scholar

[10]

W. Coppel, Dichotomies in Stability Theory, Lect. Notes. in Math. 629, Springer, 1978.  Google Scholar

[11]

Ju. Dalec'kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs 43, Amer. Math. Soc., 1974.  Google Scholar

[12]

D. Dragičević and S. Slijepčević, Characterization of hyperbolicity and generalized shadowing lemma, Dyn. Syst., 26 (2011), 483-502. doi: 10.1080/14689367.2011.606205.  Google Scholar

[13]

A. Fakhari, K. Lee, and K. Tajbakhsh, Diffeomorphisms with $L^p$-shadowing property, Acta Math. Sin., 27 (2011), 19-28. doi: 10.1007/s10114-011-0050-7.  Google Scholar

[14]

J. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, Amer. Math. Soc., 1988.  Google Scholar

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer, 1981.  Google Scholar

[16]

N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354. doi: 10.1016/j.jfa.2005.11.002.  Google Scholar

[17]

Yu. Latushkin, A. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations, J. Operator Theory, 58 (2007), 387-414.  Google Scholar

[18]

B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, 1982.  Google Scholar

[19]

A. D. Maizel, On stability of solutions of systems of differential equations, Trudi Uralskogo Politekhnicheskogo Instituta, Mathematics, 51 (1954), 20-50.  Google Scholar

[20]

R. Ma né, Characterizations of AS diffeomorphisms, in Geometry and Topology (eds. Jacob Palis and Manfredo do Carmo), Lecture Notes in Mathematics, Vol. 597, Springer Berlin, (1977), 389-394.  Google Scholar

[21]

J. Massera and J. Schäffer, Linear differential equations and functional analysis. I., Ann. of Math., 67 (1958), 517-573.  Google Scholar

[22]

J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21, Academic Press, 1966.  Google Scholar

[23]

N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line, J. Math. Anal. Appl., 261 (2001), 28-44. doi: 10.1006/jmaa.2001.7450.  Google Scholar

[24]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32 (1998), 332-353. doi: 10.1007/BF01203774.  Google Scholar

[25]

K. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc., 104 (1988), 149-156. doi: 10.2307/2047477.  Google Scholar

[26]

K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht, 2000. doi: 10.1007/978-1-4757-3210-8.  Google Scholar

[27]

K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhmirov, Lipschitz shadowing and structural stability of flows, J. Differential Equations, 252 (2012), 1723-1747. doi: 10.1016/j.jde.2011.07.026.  Google Scholar

[28]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728. doi: 10.1007/BF01194662.  Google Scholar

[29]

S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., vol. 1706, Springer, Berlin, 1999.  Google Scholar

[30]

S. Yu. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[31]

S. Pilyugin, G. Volfson and D. Todorov, Dynamical systems with Lipschitz inverse shadowing properties, Vestnik St. Petersburg University: Mathematics, 44 (2011), 208-213. doi: 10.3103/S106345411103006X.  Google Scholar

[32]

V. A. Pliss, Bounded solutions of inhomogeneous linear systems of differential equations, in Problems of Asymptotic Theory of Nonlinear Oscillations (Russian), Naukova Dumka, Kiev, (1977), 168-173.  Google Scholar

[33]

P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Operator Theory, 49 (2004), 405-418. doi: 10.1007/s00020-002-1268-7.  Google Scholar

[34]

A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl., 344 (2008), 906-920. doi: 10.1016/j.jmaa.2008.03.019.  Google Scholar

[35]

G. Sell and Y. You, Dynamics of Evolutionary Equation Applied Mathematical Sciences 143, Springer, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[36]

S. Tikhomirov, Hölder shadowing on finite intervals, Ergodic Theory Dynam. Systems, (2014), http://dx.doi.org/10.1017/etds.2014.7 Google Scholar

[37]

D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory, Discrete Contin. Dyn. Syst., 33 (2013), 4187 - 4205. doi: 10.3934/dcds.2013.33.4187.  Google Scholar

[38]

W. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations, J. Math. Anal. Appl., 191 (1985), 180-201. doi: 10.1016/S0022-247X(85)71126-2.  Google Scholar

show all references

References:
[1]

L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies with respect to a sequence of norms and admissibility, Int. J. Math., 25, 1450024 (2014), 20 pages. doi: 10.1142/S0129167X14500244.  Google Scholar

[2]

L. Barreira, D. Dragičević and C. Valls, Nonuniform hyperbolicity and admissibility, Adv. Nonlinear Stud., 14 (2014), 791-811.  Google Scholar

[3]

L. Barreira, D. Dragičević and C. Valls, Strong and weak $(L^p,L^q)$-admissibility, Bull. Sci. Math., 138 (2014), 721-741. doi: 10.1016/j.bulsci.2013.11.005.  Google Scholar

[4]

L. Barreira, D. Dragičević and C. Valls, Admissibility on the half line for evolution families,, \emph{J. Anal. Math.}, ().   Google Scholar

[5]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lect. Notes. in Math. 1926, 2008. doi: 10.1007/978-3-540-74775-8.  Google Scholar

[6]

A. Ben-Artzi and I. Gohberg, Dichotomy of systems and invertibility of linear ordinary differential operators, in Time-Variant Systems and Interpolation, Oper. Theory Adv. Appl., 56, Birkhäuser, 1992, pp. 90-119.  Google Scholar

[7]

A. Ben-Artzi, I. Gohberg and M. Kaashoek, Invertibility and dichotomy of differential operators on a half-line, J. Dynam. Differential Equations, 5 (1993), 1-36. doi: 10.1007/BF01063733.  Google Scholar

[8]

C. Chicone and Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs 70, Amer. Math. Soc., 1999. doi: 10.1090/surv/070.  Google Scholar

[9]

C. Coffman and J. Schäffer, Dichotomies for linear difference equations, Math. Ann., 172 (1967), 139-166.  Google Scholar

[10]

W. Coppel, Dichotomies in Stability Theory, Lect. Notes. in Math. 629, Springer, 1978.  Google Scholar

[11]

Ju. Dalec'kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs 43, Amer. Math. Soc., 1974.  Google Scholar

[12]

D. Dragičević and S. Slijepčević, Characterization of hyperbolicity and generalized shadowing lemma, Dyn. Syst., 26 (2011), 483-502. doi: 10.1080/14689367.2011.606205.  Google Scholar

[13]

A. Fakhari, K. Lee, and K. Tajbakhsh, Diffeomorphisms with $L^p$-shadowing property, Acta Math. Sin., 27 (2011), 19-28. doi: 10.1007/s10114-011-0050-7.  Google Scholar

[14]

J. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, Amer. Math. Soc., 1988.  Google Scholar

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer, 1981.  Google Scholar

[16]

N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354. doi: 10.1016/j.jfa.2005.11.002.  Google Scholar

[17]

Yu. Latushkin, A. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations, J. Operator Theory, 58 (2007), 387-414.  Google Scholar

[18]

B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, 1982.  Google Scholar

[19]

A. D. Maizel, On stability of solutions of systems of differential equations, Trudi Uralskogo Politekhnicheskogo Instituta, Mathematics, 51 (1954), 20-50.  Google Scholar

[20]

R. Ma né, Characterizations of AS diffeomorphisms, in Geometry and Topology (eds. Jacob Palis and Manfredo do Carmo), Lecture Notes in Mathematics, Vol. 597, Springer Berlin, (1977), 389-394.  Google Scholar

[21]

J. Massera and J. Schäffer, Linear differential equations and functional analysis. I., Ann. of Math., 67 (1958), 517-573.  Google Scholar

[22]

J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21, Academic Press, 1966.  Google Scholar

[23]

N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line, J. Math. Anal. Appl., 261 (2001), 28-44. doi: 10.1006/jmaa.2001.7450.  Google Scholar

[24]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32 (1998), 332-353. doi: 10.1007/BF01203774.  Google Scholar

[25]

K. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc., 104 (1988), 149-156. doi: 10.2307/2047477.  Google Scholar

[26]

K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht, 2000. doi: 10.1007/978-1-4757-3210-8.  Google Scholar

[27]

K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhmirov, Lipschitz shadowing and structural stability of flows, J. Differential Equations, 252 (2012), 1723-1747. doi: 10.1016/j.jde.2011.07.026.  Google Scholar

[28]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728. doi: 10.1007/BF01194662.  Google Scholar

[29]

S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., vol. 1706, Springer, Berlin, 1999.  Google Scholar

[30]

S. Yu. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[31]

S. Pilyugin, G. Volfson and D. Todorov, Dynamical systems with Lipschitz inverse shadowing properties, Vestnik St. Petersburg University: Mathematics, 44 (2011), 208-213. doi: 10.3103/S106345411103006X.  Google Scholar

[32]

V. A. Pliss, Bounded solutions of inhomogeneous linear systems of differential equations, in Problems of Asymptotic Theory of Nonlinear Oscillations (Russian), Naukova Dumka, Kiev, (1977), 168-173.  Google Scholar

[33]

P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Operator Theory, 49 (2004), 405-418. doi: 10.1007/s00020-002-1268-7.  Google Scholar

[34]

A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl., 344 (2008), 906-920. doi: 10.1016/j.jmaa.2008.03.019.  Google Scholar

[35]

G. Sell and Y. You, Dynamics of Evolutionary Equation Applied Mathematical Sciences 143, Springer, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[36]

S. Tikhomirov, Hölder shadowing on finite intervals, Ergodic Theory Dynam. Systems, (2014), http://dx.doi.org/10.1017/etds.2014.7 Google Scholar

[37]

D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory, Discrete Contin. Dyn. Syst., 33 (2013), 4187 - 4205. doi: 10.3934/dcds.2013.33.4187.  Google Scholar

[38]

W. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations, J. Math. Anal. Appl., 191 (1985), 180-201. doi: 10.1016/S0022-247X(85)71126-2.  Google Scholar

[1]

Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39

[2]

Davor Dragičević. Admissibility and polynomial dichotomies for evolution families. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1321-1336. doi: 10.3934/cpaa.2020064

[3]

César M. Silva. Admissibility and generalized nonuniform dichotomies for discrete dynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021112

[4]

Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111

[5]

Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853

[6]

Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025

[7]

Luis Barreira, Claudia Valls. Admissibility versus nonuniform exponential behavior for noninvertible cocycles. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1297-1311. doi: 10.3934/dcds.2013.33.1297

[8]

Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929

[9]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[10]

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010

[11]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[12]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[13]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[14]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[15]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[16]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[17]

Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115

[18]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[19]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[20]

Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]