\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gradient estimates and comparison principle for some nonlinear elliptic equations

Abstract Related Papers Cited by
  • We consider a class of Dirichlet boundary problems for nonlinear elliptic equations with a first order term. We show how the summability of the gradient of a solution increases when the summability of the datum increases. We also prove comparison principle which gives in turn uniqueness results by strenghtening the assumptions on the operators.
    Mathematics Subject Classification: Primary: 35J25; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Alvino, Sharp a priori estimates for some nonlinear elliptic problems, Boll. Accademia Gioenia di Scienze Naturali in Catania, 46 (2013), 2-11.

    [2]

    A. Alvino, M. F. Betta and A. Mercaldo, Comparison principle for some class of nonlinear elliptic equations, J. Differential Equations, 12 (2010), 3279-3290.doi: 10.1016/j.jde.2010.07.030.

    [3]

    A. Alvino, A. Cianchi, V. G. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054.doi: 10.1016/j.anihpc.2010.01.010.

    [4]

    A. Alvino, V. Ferone and A. Mercaldo, Sharp a-priori estimates for a class of nonlinear elliptic equations with lower order terms, Ann. Mat. Pura Appl., DOI 10.1007/s10231-014-0416-4.

    [5]

    A. Alvino, V. Ferone and G. Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with $L^1$ data, Ann. Mat. Pura Appl., 178 (2000), 129-142.doi: 10.1007/BF02505892.

    [6]

    A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^{1}$ data: an approach via symmetrization methods, Mediterr. J. Math, 5 (2008), 173-185.doi: 10.1007/s00009-008-0142-5.

    [7]

    A. Alvino and A. Mercaldo, Nonlinear elliptic equations with lower order terms and symmetrization methods, Boll Unione Mat. Ital., 1 (2008), 645-662.

    [8]

    G. Barles, G. Díaz and J. I. Díaz, Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential Equations, 17 (1992), 1037-1050.doi: 10.1080/03605309208820876.

    [9]

    G. Barles and A. Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations, Ann. Scuola Norm. Sup., Pisa Cl. Sci, 5 (2006), 107-136.

    [10]

    Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^{1}$ theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 22 (1995), 241-273.

    [11]

    C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.

    [12]

    M. F. Betta and A. Mercaldo, Uniqueness results for nonlinear elliptic equations via symmetrization methods, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 21 (2010), 1-14.doi: 10.4171/RLM/557.

    [13]

    M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad. Sci. Paris, 334 (2002), 757-762.doi: 10.1016/S1631-073X(02)02338-5.

    [14]

    M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Uniqueness of renormalized solutions to nonlinear elliptic equations with lower-order term and right-hand side in $L^1(\Omega)$, A tribute to J.-L. Lions. (electronic), ESAIM Control Optim. Calc. Var. 8 (2002), 239-272.doi: 10.1051/cocv:2002051.

    [15]

    M. F. Betta, A. Mercaldo and R. Volpicelli, Continuous dependence on the data for solutions to nonlinear elliptic equations with a lower order term, Ricerche Mat., 63 (2014), 41-56.doi: 10.1007/s11587-014-0198-4.

    [16]

    A. Cianchi and V. G. Maz'ya, Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems, J. Eur. Math. Soc. (JEMS), 16 (2014), 571-595.doi: 10.4171/JEMS/440.

    [17]

    A. Dall'Aglio, Approximated solutions of equations with $L^{1}$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989.

    [18]

    G. Dal Maso and A. Malusa, Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 375-396.

    [19]

    G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 741-808.

    [20]

    F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093-1149.doi: 10.1353/ajm.2011.0023.

    [21]

    V. Ferone and B. Messano, Comparison and existence results for classes of nonlinear elliptic equations with general growth in the gradient, Advanced Nonlinear Studies, 7 (2007), 31-46.

    [22]

    V. Ferone and F. Murat, Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, J. Differential Equations, 256 (2014), 577-608.doi: 10.1016/j.jde.2013.09.013.

    [23]

    N. Grenon, F. Murat and A. Porretta, A priori estimates and existence for elliptic equations with gradient dependent term, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (2014), 137-205.

    [24]

    O. Guibé and A. Mercaldo, Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms, Commun. Pure Appl. Anal., 7 (2008), 163-192.

    [25]

    R. Hunt, On L(p,q) spaces, Enseignement Math., 12 (1966), 249-276.

    [26]

    B. Kawohl, Rearrangements and Convexity of Level Sets in P.D.E., Lecture Notes in Mathematics, No. 1150 Springer, Berlin, 1985.

    [27]

    J. Leray and J.-L. Lions, Quelques résulatats de Visik sur les problées elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

    [28]

    P.- L. Lions and F. Murat, Sur les solutions renormalisées d'equations elliptiques non linéaires, manuscript.

    [29]

    A. Mercaldo, A priori estimates and comparison principle for some nonlinear elliptic equations, in Geometric Properties for Parabolics and Elliptic PDE's. Springer INdAM Series, Vol. 2 (2013), 223-235doi: 10.1007/978-88-470-2841-8_14.

    [30]

    F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023, Laboratoire d'Analyse Numérique de l'Université Paris VI (1993).

    [31]

    A. Porretta, On the comparison principle for p-laplace operators with first order terms, in On the notions of solution to nonlinear elliptic problems: results and developments, Quad. Mat. Dept. Math., Seconda Univ. di Napoli, Caserta, 23, (2008) 459-497.

    [32]

    G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., 120 (1979), 160-184.doi: 10.1007/BF02411942.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(185) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return