Citation: |
[1] |
A. Alvino, Sharp a priori estimates for some nonlinear elliptic problems, Boll. Accademia Gioenia di Scienze Naturali in Catania, 46 (2013), 2-11. |
[2] |
A. Alvino, M. F. Betta and A. Mercaldo, Comparison principle for some class of nonlinear elliptic equations, J. Differential Equations, 12 (2010), 3279-3290.doi: 10.1016/j.jde.2010.07.030. |
[3] |
A. Alvino, A. Cianchi, V. G. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054.doi: 10.1016/j.anihpc.2010.01.010. |
[4] |
A. Alvino, V. Ferone and A. Mercaldo, Sharp a-priori estimates for a class of nonlinear elliptic equations with lower order terms, Ann. Mat. Pura Appl., DOI 10.1007/s10231-014-0416-4. |
[5] |
A. Alvino, V. Ferone and G. Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with $L^1$ data, Ann. Mat. Pura Appl., 178 (2000), 129-142.doi: 10.1007/BF02505892. |
[6] |
A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^{1}$ data: an approach via symmetrization methods, Mediterr. J. Math, 5 (2008), 173-185.doi: 10.1007/s00009-008-0142-5. |
[7] |
A. Alvino and A. Mercaldo, Nonlinear elliptic equations with lower order terms and symmetrization methods, Boll Unione Mat. Ital., 1 (2008), 645-662. |
[8] |
G. Barles, G. Díaz and J. I. Díaz, Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential Equations, 17 (1992), 1037-1050.doi: 10.1080/03605309208820876. |
[9] |
G. Barles and A. Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations, Ann. Scuola Norm. Sup., Pisa Cl. Sci, 5 (2006), 107-136. |
[10] |
Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^{1}$ theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 22 (1995), 241-273. |
[11] |
C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. |
[12] |
M. F. Betta and A. Mercaldo, Uniqueness results for nonlinear elliptic equations via symmetrization methods, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 21 (2010), 1-14.doi: 10.4171/RLM/557. |
[13] |
M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad. Sci. Paris, 334 (2002), 757-762.doi: 10.1016/S1631-073X(02)02338-5. |
[14] |
M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Uniqueness of renormalized solutions to nonlinear elliptic equations with lower-order term and right-hand side in $L^1(\Omega)$, A tribute to J.-L. Lions. (electronic), ESAIM Control Optim. Calc. Var. 8 (2002), 239-272.doi: 10.1051/cocv:2002051. |
[15] |
M. F. Betta, A. Mercaldo and R. Volpicelli, Continuous dependence on the data for solutions to nonlinear elliptic equations with a lower order term, Ricerche Mat., 63 (2014), 41-56.doi: 10.1007/s11587-014-0198-4. |
[16] |
A. Cianchi and V. G. Maz'ya, Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems, J. Eur. Math. Soc. (JEMS), 16 (2014), 571-595.doi: 10.4171/JEMS/440. |
[17] |
A. Dall'Aglio, Approximated solutions of equations with $L^{1}$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989. |
[18] |
G. Dal Maso and A. Malusa, Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 375-396. |
[19] |
G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 741-808. |
[20] |
F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093-1149.doi: 10.1353/ajm.2011.0023. |
[21] |
V. Ferone and B. Messano, Comparison and existence results for classes of nonlinear elliptic equations with general growth in the gradient, Advanced Nonlinear Studies, 7 (2007), 31-46. |
[22] |
V. Ferone and F. Murat, Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, J. Differential Equations, 256 (2014), 577-608.doi: 10.1016/j.jde.2013.09.013. |
[23] |
N. Grenon, F. Murat and A. Porretta, A priori estimates and existence for elliptic equations with gradient dependent term, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (2014), 137-205. |
[24] |
O. Guibé and A. Mercaldo, Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms, Commun. Pure Appl. Anal., 7 (2008), 163-192. |
[25] |
R. Hunt, On L(p,q) spaces, Enseignement Math., 12 (1966), 249-276. |
[26] |
B. Kawohl, Rearrangements and Convexity of Level Sets in P.D.E., Lecture Notes in Mathematics, No. 1150 Springer, Berlin, 1985. |
[27] |
J. Leray and J.-L. Lions, Quelques résulatats de Visik sur les problées elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. |
[28] |
P.- L. Lions and F. Murat, Sur les solutions renormalisées d'equations elliptiques non linéaires, manuscript. |
[29] |
A. Mercaldo, A priori estimates and comparison principle for some nonlinear elliptic equations, in Geometric Properties for Parabolics and Elliptic PDE's. Springer INdAM Series, Vol. 2 (2013), 223-235doi: 10.1007/978-88-470-2841-8_14. |
[30] |
F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023, Laboratoire d'Analyse Numérique de l'Université Paris VI (1993). |
[31] |
A. Porretta, On the comparison principle for p-laplace operators with first order terms, in On the notions of solution to nonlinear elliptic problems: results and developments, Quad. Mat. Dept. Math., Seconda Univ. di Napoli, Caserta, 23, (2008) 459-497. |
[32] |
G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., 120 (1979), 160-184.doi: 10.1007/BF02411942. |