May  2015, 14(3): 941-957. doi: 10.3934/cpaa.2015.14.941

KAM Tori for generalized Benjamin-Ono equation

1. 

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, 450001, China

Received  July 2014 Revised  December 2014 Published  March 2015

In this paper, we investigate one-dimensional generalized Benjamin-Ono equation, \begin{eqnarray} u_t+\mathcal{H}u_{xx}+u^{4}u_x=0,x\in\mathbb{T}, \end{eqnarray} and prove the existence of quasi-periodic solutions with two frequencies. The proof is based on partial Birkhoff normal form and an unbounded KAM theorem developed by Liu-Yuan[Commun.Math.Phys.307(2011)629-673].
Citation: Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941
References:
[1]

P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincar Anal. Non Linaire, 30 (2013), 33-77. doi: 10.1016/j.anihpc.2012.06.001.  Google Scholar

[2]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536. doi: 10.1007/s00208-013-1001-7.  Google Scholar

[3]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV, C. R. Math. Acad. Sci. Paris, 352 (2014), 603-607. doi: 10.1016/j.crma.2014.04.012.  Google Scholar

[4]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592. Google Scholar

[5]

M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955. doi: 10.1007/s00205-014-0726-0.  Google Scholar

[6]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 475-497. doi: 10.1155/S1073792894000516.  Google Scholar

[7]

J. Bourgain, On Melnikov's persistence problem, Math. Res. Lett., 4 (1997), 445-458. doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[8]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439. doi: 10.2307/121001.  Google Scholar

[9]

J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of mathematics studies, Princeton University Press, 2005.  Google Scholar

[10]

J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94. doi: 10.1016/j.jfa.2004.10.019.  Google Scholar

[11]

L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525. doi: 10.1007/s002200050824.  Google Scholar

[12]

G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., 177 (2005), 367-478. doi: 10.1007/s00205-005-0381-6.  Google Scholar

[13]

J. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential equations, 11 (1986), 1031-1081. doi: 10.1080/03605308608820456.  Google Scholar

[14]

T. Kappler and J. Pöschel, KdV $&$ KAM, Springer-Verlag,Berlin,Heidelberg, 2003. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, On the generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 342 (1994), 155-172. doi: 10.2307/2154688.  Google Scholar

[16]

S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum, Funkt. Anal. Prilozh., 21 (1987), 22-37. [English translation in Funct. Anal. Appl., 21(1987), 192-205.]  Google Scholar

[17]

S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, ser. Mat., 52 (1989), 41-63. [English translation in Math. USSR Izv., 32 (1989), 39-62.]  Google Scholar

[18]

S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Springer-Verlag, Berlin, 1993.  Google Scholar

[19]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179. doi: 10.2307/2118656.  Google Scholar

[20]

S. B. Kuksin, On small denominators equations with large variable coefficients, J. Appl. Math. Phys., 48(1997), 262-271. doi: 10.1007/PL00001476.  Google Scholar

[21]

S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math-Math Phys., 10 (1998), 1-64.  Google Scholar

[22]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Univ. Press,Oxford, 2000.  Google Scholar

[23]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172. doi: 10.1002/cpa.20314.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions, Journal of Differential Equations, 256 (2014), 1627-1652. doi: 10.1016/j.jde.2013.11.007.  Google Scholar

[26]

L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential, Journal of Mathematical Analysis and Applications, 390 (2012), 335-354. doi: 10.1016/j.jmaa.2012.01.046.  Google Scholar

[27]

L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 689-707. doi: 10.3934/dcds.2014.34.689.  Google Scholar

[28]

L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equation with small initial data, J. Math. Pures Appl., 83 (2004), 277-311. doi: 10.1016/j.matpur.2003.11.005.  Google Scholar

[29]

H. Ono, Algebraic solitary waves in stratified fluids, Journal of the Physical Society of Japan, 39 (1975), 1082-1091.  Google Scholar

[30]

J. Pöschel, A KAM theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisacl. Sci., 23 (1996), 119-148.  Google Scholar

[31]

J. Pöschel, Quasi-periodic solutions for nonlinear wave equations, Comm. Math. Helv., 71 (1996), 269-296. doi: 10.1007/BF02566420.  Google Scholar

[32]

T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), J. Hyperbolic Differ. Equ., 1 (2004), 27-49. doi: 10.1142/S0219891604000032.  Google Scholar

[33]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory, Commun. Math. Phys., 127 (1990), 479-528.  Google Scholar

[34]

X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation, J. Math. Phys., 54 (2013), 052701. doi: 10.1063/1.4803852.  Google Scholar

[35]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228. doi: 10.1088/0951-7715/24/4/010.  Google Scholar

show all references

References:
[1]

P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincar Anal. Non Linaire, 30 (2013), 33-77. doi: 10.1016/j.anihpc.2012.06.001.  Google Scholar

[2]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536. doi: 10.1007/s00208-013-1001-7.  Google Scholar

[3]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV, C. R. Math. Acad. Sci. Paris, 352 (2014), 603-607. doi: 10.1016/j.crma.2014.04.012.  Google Scholar

[4]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592. Google Scholar

[5]

M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955. doi: 10.1007/s00205-014-0726-0.  Google Scholar

[6]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 475-497. doi: 10.1155/S1073792894000516.  Google Scholar

[7]

J. Bourgain, On Melnikov's persistence problem, Math. Res. Lett., 4 (1997), 445-458. doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[8]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439. doi: 10.2307/121001.  Google Scholar

[9]

J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of mathematics studies, Princeton University Press, 2005.  Google Scholar

[10]

J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94. doi: 10.1016/j.jfa.2004.10.019.  Google Scholar

[11]

L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525. doi: 10.1007/s002200050824.  Google Scholar

[12]

G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., 177 (2005), 367-478. doi: 10.1007/s00205-005-0381-6.  Google Scholar

[13]

J. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential equations, 11 (1986), 1031-1081. doi: 10.1080/03605308608820456.  Google Scholar

[14]

T. Kappler and J. Pöschel, KdV $&$ KAM, Springer-Verlag,Berlin,Heidelberg, 2003. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, On the generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 342 (1994), 155-172. doi: 10.2307/2154688.  Google Scholar

[16]

S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum, Funkt. Anal. Prilozh., 21 (1987), 22-37. [English translation in Funct. Anal. Appl., 21(1987), 192-205.]  Google Scholar

[17]

S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, ser. Mat., 52 (1989), 41-63. [English translation in Math. USSR Izv., 32 (1989), 39-62.]  Google Scholar

[18]

S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Springer-Verlag, Berlin, 1993.  Google Scholar

[19]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179. doi: 10.2307/2118656.  Google Scholar

[20]

S. B. Kuksin, On small denominators equations with large variable coefficients, J. Appl. Math. Phys., 48(1997), 262-271. doi: 10.1007/PL00001476.  Google Scholar

[21]

S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math-Math Phys., 10 (1998), 1-64.  Google Scholar

[22]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Univ. Press,Oxford, 2000.  Google Scholar

[23]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172. doi: 10.1002/cpa.20314.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions, Journal of Differential Equations, 256 (2014), 1627-1652. doi: 10.1016/j.jde.2013.11.007.  Google Scholar

[26]

L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential, Journal of Mathematical Analysis and Applications, 390 (2012), 335-354. doi: 10.1016/j.jmaa.2012.01.046.  Google Scholar

[27]

L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 689-707. doi: 10.3934/dcds.2014.34.689.  Google Scholar

[28]

L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equation with small initial data, J. Math. Pures Appl., 83 (2004), 277-311. doi: 10.1016/j.matpur.2003.11.005.  Google Scholar

[29]

H. Ono, Algebraic solitary waves in stratified fluids, Journal of the Physical Society of Japan, 39 (1975), 1082-1091.  Google Scholar

[30]

J. Pöschel, A KAM theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisacl. Sci., 23 (1996), 119-148.  Google Scholar

[31]

J. Pöschel, Quasi-periodic solutions for nonlinear wave equations, Comm. Math. Helv., 71 (1996), 269-296. doi: 10.1007/BF02566420.  Google Scholar

[32]

T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), J. Hyperbolic Differ. Equ., 1 (2004), 27-49. doi: 10.1142/S0219891604000032.  Google Scholar

[33]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory, Commun. Math. Phys., 127 (1990), 479-528.  Google Scholar

[34]

X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation, J. Math. Phys., 54 (2013), 052701. doi: 10.1063/1.4803852.  Google Scholar

[35]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228. doi: 10.1088/0951-7715/24/4/010.  Google Scholar

[1]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[2]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[3]

Luca Biasco, Luigi Chierchia. On the measure of KAM tori in two degrees of freedom. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6635-6648. doi: 10.3934/dcds.2020134

[4]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[5]

Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120

[6]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[7]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[8]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[9]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[10]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[11]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[12]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[13]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[14]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[15]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[16]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[17]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[18]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[19]

Olga Bernardi, Matteo Dalla Riva. Analytic dependence on parameters for Evans' approximated Weak KAM solutions. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4625-4636. doi: 10.3934/dcds.2017199

[20]

Frank Trujillo. Uniqueness properties of the KAM curve. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021072

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]