July  2016, 15(4): 1265-1283. doi: 10.3934/cpaa.2016.15.1265

The lifespan of solutions to semilinear damped wave equations in one space dimension

1. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810

Received  September 2015 Revised  January 2016 Published  April 2016

In the present paper, we consider the initial value problem for semilinear damped wave equations in one space dimension. Wakasugi [7] have obtained an upper bound of the lifespan for the problem only in the subcritical case. On the other hand, D'Abbicco $\&$ Lucente $\&$ Reissig [3] showed a blow-up result in the critical case. The aim of this paper is to give an estimate of the upper bound of the lifespan in the critical case, and show the optimality of the upper bound. Also, we derive an estimate of the lower bound of the lifespan in the subcritical case which shows the optimality of the upper bound in [7]. Moreover, we show that the critical exponent changes when the initial data are odd functions.
Citation: Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265
References:
[1]

R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions,, \emph{J. Differential Equations}, 167 (2000), 87.  doi: 10.1006/jdeq.2000.3766.  Google Scholar

[2]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, \emph{Mathematical Methods in Applied Sciences}, 38 (2015), 1032.  doi: 10.1002/mma.3126.  Google Scholar

[3]

M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping,, \emph{Journal of Differential Equations}, 259 (2015), 5040.  doi: 10.1016/j.jde.2015.06.018.  Google Scholar

[4]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, \emph{Manuscripta Math.}, 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[5]

H. Kubo, A. Osaka and M. Yazici, Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension,, \emph{Interdisciplinary Information Sciences}, 19 (2013), 143.  doi: 10.4036/iis.2013.143.  Google Scholar

[6]

K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension,, \emph{Hokkaido Mathematical Journal}, ().   Google Scholar

[7]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Doctoral thesis, (2014).   Google Scholar

show all references

References:
[1]

R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions,, \emph{J. Differential Equations}, 167 (2000), 87.  doi: 10.1006/jdeq.2000.3766.  Google Scholar

[2]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, \emph{Mathematical Methods in Applied Sciences}, 38 (2015), 1032.  doi: 10.1002/mma.3126.  Google Scholar

[3]

M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping,, \emph{Journal of Differential Equations}, 259 (2015), 5040.  doi: 10.1016/j.jde.2015.06.018.  Google Scholar

[4]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, \emph{Manuscripta Math.}, 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[5]

H. Kubo, A. Osaka and M. Yazici, Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension,, \emph{Interdisciplinary Information Sciences}, 19 (2013), 143.  doi: 10.4036/iis.2013.143.  Google Scholar

[6]

K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension,, \emph{Hokkaido Mathematical Journal}, ().   Google Scholar

[7]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Doctoral thesis, (2014).   Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[4]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[7]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[8]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[9]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[10]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[11]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[12]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[16]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[17]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]