July  2016, 15(4): 1309-1333. doi: 10.3934/cpaa.2016.15.1309

Soliton solutions for a quasilinear Schrödinger equation with critical exponent

1. 

Department of Mathematics, Central China Normal University, Wuhan, 430079, China

2. 

Department of Mathematics, Wuhan University of Technology, Wuhan, 430070, China

Received  October 2015 Revised  January 2016 Published  April 2016

This paper is concerned with the existence of soliton solutions for a quasilinear Schrödinger equation in $R^N$ with critical exponent, which appears from modelling the self-channeling of a high-power ultrashort laser in matter. By working with a perturbation approach which was initially proposed in [26], we prove that the given problem has a positive ground state solution.
Citation: Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal.}, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[3]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H.M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B}, 5 (1993), 3539.  doi: 10.1063/1.860828.  Google Scholar

[5]

F.G. Bass and N.N. Nasanov, Nonlinear electromagnetic-spin waves,, \emph{Phys. Rep.}, 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations,, \emph{Exposition. Math.}, 4 (1986), 279.   Google Scholar

[7]

X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett.}, 70 (1993), 2082.  doi: 10.1103/PhysRevLett.70.2082.  Google Scholar

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA.}, 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation,, \emph{Physica D}, 238 (2009), 38.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Commun. Math. Phys.}, 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[11]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4774153.  Google Scholar

[12]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$,, \emph{Commun. Math. Sci.}, 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[13]

Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 258 (2015), 115.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[14]

Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations,, \emph{J. Differential Equations}, 260 (2016), 1228.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations,, Courant Lecture Notes in Mathematics, (1997).   Google Scholar

[16]

R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, \emph{Z. Phys. B}, 37 (1980), 83.   Google Scholar

[17]

A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Magnetic solitons,, \emph{Phys. Rep.}, 194 (1990), 117.  doi: doi:10.1016/0370-1573(90)90130-T.  Google Scholar

[18]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan}, 50 (1981), 3262.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[19]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys.}, 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[20]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part I},, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 109.   Google Scholar

[21]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part II,, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 223.   Google Scholar

[22]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations,, \emph{Comm. Partial Differential Equations}, 24 (1999), 1399.  doi: 10.1080/03605309908821469.  Google Scholar

[23]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations}, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[24]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[25]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7 .  Google Scholar

[26]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method,, \emph{Proc. Amer. Math. Soc.}, 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6 .  Google Scholar

[27]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method,, \emph{J. Differential Equations}, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[28]

X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 46 (2013), 641.  doi: 10.1007/s00526-012-0497-0.  Google Scholar

[29]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$,, \emph{J. Differential Equations}, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[30]

V.G. Makhankov and V.K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory,, \emph{Phys. Rep.}, 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

P. Pucci and J. Serrin, A general variational idnetity,, \emph{Indiana Univ. Math. J.}, 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[32]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[33]

G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain,, \emph{Phys. A}, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E}, 50 (1994), 687.  doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Anal. TMA.}, 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

E.A.B. Silva and G.F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 1.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[37]

J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4811394.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal.}, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[3]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H.M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B}, 5 (1993), 3539.  doi: 10.1063/1.860828.  Google Scholar

[5]

F.G. Bass and N.N. Nasanov, Nonlinear electromagnetic-spin waves,, \emph{Phys. Rep.}, 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations,, \emph{Exposition. Math.}, 4 (1986), 279.   Google Scholar

[7]

X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett.}, 70 (1993), 2082.  doi: 10.1103/PhysRevLett.70.2082.  Google Scholar

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA.}, 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation,, \emph{Physica D}, 238 (2009), 38.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Commun. Math. Phys.}, 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[11]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4774153.  Google Scholar

[12]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$,, \emph{Commun. Math. Sci.}, 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[13]

Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 258 (2015), 115.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[14]

Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations,, \emph{J. Differential Equations}, 260 (2016), 1228.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations,, Courant Lecture Notes in Mathematics, (1997).   Google Scholar

[16]

R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, \emph{Z. Phys. B}, 37 (1980), 83.   Google Scholar

[17]

A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Magnetic solitons,, \emph{Phys. Rep.}, 194 (1990), 117.  doi: doi:10.1016/0370-1573(90)90130-T.  Google Scholar

[18]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan}, 50 (1981), 3262.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[19]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys.}, 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[20]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part I},, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 109.   Google Scholar

[21]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part II,, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 223.   Google Scholar

[22]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations,, \emph{Comm. Partial Differential Equations}, 24 (1999), 1399.  doi: 10.1080/03605309908821469.  Google Scholar

[23]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations}, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[24]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[25]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7 .  Google Scholar

[26]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method,, \emph{Proc. Amer. Math. Soc.}, 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6 .  Google Scholar

[27]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method,, \emph{J. Differential Equations}, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[28]

X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 46 (2013), 641.  doi: 10.1007/s00526-012-0497-0.  Google Scholar

[29]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$,, \emph{J. Differential Equations}, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[30]

V.G. Makhankov and V.K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory,, \emph{Phys. Rep.}, 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

P. Pucci and J. Serrin, A general variational idnetity,, \emph{Indiana Univ. Math. J.}, 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[32]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[33]

G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain,, \emph{Phys. A}, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E}, 50 (1994), 687.  doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Anal. TMA.}, 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

E.A.B. Silva and G.F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 1.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[37]

J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4811394.  Google Scholar

[1]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[2]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[7]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[17]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[19]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[20]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]