Citation: |
[1] |
S. Chen and Z. Tan, Optimal partial regularity of second order parabolic systems under controllable growth condition, J. Funct. Anal., 66 (2014), 4908-4937.doi: 10.1016/j.jfa.2014.02.022. |
[2] |
Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.doi: 10.1137/050624522. |
[3] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer-Verlag, Berlin Heidelberg, 2011.doi: 10.1007/978-3-642-18363-8. |
[4] |
D. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000), 267-293. |
[5] |
D. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent II, Math. Nachr., 246/247 (2002), 53-67.doi: 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T. |
[6] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ, 1983.doi: 86b:49003. |
[7] |
E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003.doi: 10.1142/9789812795557. |
[8] |
H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces $W^k_M(\Omega)$, Comment. Math. Prace Mat., 21 (1980), 315-324. |
[9] |
O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 116 (1991), 592-618. |
[10] |
K. R. Rajagopal and M. Ruzicka, Mathematical modelling of electrorheological fluids, Continuum. Mech. Thermdyn., 13 (2001), 59-78. |
[11] |
M. Růžička, A note on steady flow of fluids with shear dependent viscosity, Nonlin. Anal. Theory, Meth. Appl., 30 (1997), 3029-3039.doi: 10.1016/S0362-546X(97)00391-X. |
[12] |
M. Růžička, Electrorheological fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000.doi: 10.1007/BFb0104029. |
[13] |
P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30.doi: 10.1016/0022-0396(91)90158-6. |
[14] |
M. Mihăliescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc., 462 (2006), 2625-2641.doi: 10.1098/rspa.2005.1633. |