• Previous Article
    Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators
  • CPAA Home
  • This Issue
  • Next Article
    On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior
January  2016, 15(1): 243-260. doi: 10.3934/cpaa.2016.15.243

Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024

Received  May 2015 Revised  September 2015 Published  December 2015

This paper deals with two-species quasilinear parabolic-parabolic Keller-Segel system $ u_{it}=\nabla\cdot(\phi_i(u_i)\nabla u_i)-\nabla\cdot(\psi_i(u_i)\nabla v)$, $i=1,2$, $v_t=\Delta v-v+u_1+u_2$ in $\Omega\times (0,T)$, subject to the homogeneous Neumann boundary conditions, with bounded domain $\Omega\subset\mathbb{R}^n$, $n\geq2$. We prove that if $\frac{\psi_i(u_i)}{\phi_i(u_i)}\leq C_iu_i^{\alpha_i}$ for $u_i>1$ with $0<\alpha_i<\frac{2}{n}$ and $C_i>0$, $i=1,2$, then the solutions are globally bounded, while if $\frac{\psi_1(u_1)}{\phi_1(u_1)}\geq C_1u_1^{\alpha_1}$ for $u_1>1$ with $\Omega=B_R$, $\alpha_1>\frac{2}{n}$, then for any radial $u_{20}\in C^0(\overline{\Omega})$ and $m_1>0$, there exists positive radial initial data $u_{10}$ with $\int_\Omega u_{10}=m_1$ such that the solution blows up in a finite time $T_{\max}$ in the sense $\lim_{{t\rightarrow T_{\max}}} \|u_1(\cdot,t)+u_2(\cdot,t)\|_{L^{\infty}(\Omega)}=\infty$. In particular, if $\alpha_1>\frac{2}{n}$ with $0<\alpha_2<\frac{2}{n}$, the finite time blow-up for the species $u_1$ is obtained under suitable initial data, a new phenomenon unknown yet even for the semilinear Keller-Segel system of two species.
Citation: Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243
References:
[1]

X. R. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188. doi: 10.1016/j.jmaa.2013.10.061.

[2]

T. Cieslak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045.

[3]

T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146. doi: 10.1007/s10440-013-9832-5.

[4]

T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004.

[5]

T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009.

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, \emph{Jber. DMV}, 105 (): 103. 

[8]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x.

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[10]

S. Ishida, K. Seki and T, Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028.

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966.

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, 1968.

[13]

Y. Li and Y. X. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109 (2014), 72-84. doi: 10.1016/j.na.2014.05.021.

[14]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.

[15]

Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[16]

M. Winkler, Does a "volume-filling effect" always prevent chemotactic collapse? Math. Meth. Appl. Sci., 33 (2010), 12-24. doi: 10.1002/mma.1146.

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[18]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[19]

Q. S. Zhang and Y. X. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014), 47-63. doi: 10.1016/j.jmaa.2014.03.084.

show all references

References:
[1]

X. R. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188. doi: 10.1016/j.jmaa.2013.10.061.

[2]

T. Cieslak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045.

[3]

T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146. doi: 10.1007/s10440-013-9832-5.

[4]

T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004.

[5]

T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009.

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, \emph{Jber. DMV}, 105 (): 103. 

[8]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x.

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[10]

S. Ishida, K. Seki and T, Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028.

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966.

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, 1968.

[13]

Y. Li and Y. X. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109 (2014), 72-84. doi: 10.1016/j.na.2014.05.021.

[14]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.

[15]

Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[16]

M. Winkler, Does a "volume-filling effect" always prevent chemotactic collapse? Math. Meth. Appl. Sci., 33 (2010), 12-24. doi: 10.1002/mma.1146.

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[18]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[19]

Q. S. Zhang and Y. X. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014), 47-63. doi: 10.1016/j.jmaa.2014.03.084.

[1]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

[2]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[3]

Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178

[4]

Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5461-5480. doi: 10.3934/dcdsb.2019066

[5]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[6]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[7]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[8]

Liangchen Wang, Chunlai Mu. A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4585-4601. doi: 10.3934/dcdsb.2020114

[9]

Miaoqing Tian, Shujuan Wang, Xia Xiao. Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022071

[10]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[11]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[12]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure and Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[13]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[14]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[15]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[16]

Xu Pan, Liangchen Wang. On a quasilinear fully parabolic two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 361-391. doi: 10.3934/dcdsb.2021047

[17]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[18]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[19]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[20]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]