\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundary value problems for a semilinear elliptic equation with singular nonlinearity

Abstract Related Papers Cited by
  • Structure of solutions of boundary value problems for a semilinear elliptic equation with singular nonlinearity is studied. It is seen that the structure of solutions relies on the boundary values. The global branches of solutions of the boundary value problems are established. Moreover, some Liouville type results for the entire solutions of the equation are also obtained.
    Mathematics Subject Classification: Primary: 35B45; Secondary: 35J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., LX (2007), 1731-1768.doi: 10.1002/cpa.20189.

    [2]

    G. Flores, G. A. Mercado and J. A. Pelesko, Dynamics and touchdown in electrostatic MEMS, Proceedings of ICMEMS, (2003), 182-187.

    [3]

    N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math.Anal., 38 (2007), 1423-1449.doi: 10.1137/050647803.

    [4]

    Z. M. Guo and L. Ma, Finite Morse index steady states of van der Waals force driven thin film equations, J. Math. Anal. Appl., 368 (2010), 559-572.doi: 10.1016/j.jmaa.2010.04.012.

    [5]

    Z. M. Guo and X. Z. Peng, On the structure of positive solutions to an elliptic problem with a singular nonlinearity, J. Math. Anal.Appl., 354 (2009), 134-146.doi: 10.1016/j.jmaa.2009.01.001.

    [6]

    Z. M. Guo and J. C. Wei, Ausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math., 120 (2006), 193-209.doi: 10.1007/s00229-006-0001-2.

    [7]

    Z. M. Guo and J. C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity, Proc. R. Soc. Edinburgh, 137A (2007), 963-994.doi: 10.1017/S0308210505001083.

    [8]

    Z. M. Guo and J. C. Wei, The Cauchy problem for a reaction-diffusion equation with a singular nonlinearity, J. Differential Equations, 240 (2007), 279-323.doi: 10.1016/j.jde.2007.06.012.

    [9]

    Z. M. Guo and J. C. Wei, Infinitely many turning points for an elliptic problem with a singular nonlinearity, J. London Math. Soc., 78 (2008), 21-35.doi: 10.1112/jlms/jdm121.

    [10]

    Z. M. Guo and D. Ye and F. Zhou, Existence of singular positive solutions for some semilinear elliptic equations, Pacific J. Math., 236 (2008), 57-71.doi: 10.2140/pjm.2008.236.57.

    [11]

    H. Jiang and W. M. Ni, On steady states of van der Waals force driven thin film equations, European J. Appl. Math., 18 (2007), 153-180.doi: 10.1017/S0956792507006936.

    [12]

    F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci., 463 (2007), 1323-1337.doi: 10.1098/rspa.2007.1816.

    [13]

    L. Ma and J. C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., 254 (2008), 1058-1087.doi: 10.1016/j.jfa.2007.09.017.

    [14]

    J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62 (2002), 888-908.doi: 10.1137/S0036139900381079.

    [15]

    J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman Hall and CRC press, 2002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return