# American Institute of Mathematical Sciences

March  2016, 15(2): 429-444. doi: 10.3934/cpaa.2016.15.429

## Schrödinger-Kirchhoff-Poisson type systems

 1 The Fields Institute for Research in Mathematical Sciences, 222 College Street, 2nd floor, Toronto, Ontario, M5T 3J1, Canada 2 Universidade Federal do Pará, Faculdade de Matemática, CEP 66075-110, Belém, Pará, Brazil

Received  March 2015 Revised  October 2015 Published  January 2016

In this article, we are concerned with the boundary value problem $$\left\{ \begin{array}{ll} \displaystyle -\left(a+b\int_{\Omega}|\nabla u|^{2}\right)\Delta u +\phi u= f(x, u) &\text{in }\Omega \hbox{} \\ -\Delta \phi= u^{2} &\text{in }\Omega \hbox{} \\ u=\phi=0&\text{on }\partial\Omega, \hbox{} \end{array} \right.$$ where $\Omega$ is a bounded smooth domain of $\mathbb{R}^N$ ($N=1,2$ or $3$), $a>0$, $b\geq0$, and $f:\overline{\Omega}\times \mathbb{R}\to\mathbb{R}$ is a continuous function which is globally $3$-superlinear. By using some variants of the mountain pass theorem established in this paper, we show that this problem has at least three solutions: one positive, one negative, and one which changes its sign. Furthermore, in case $f$ is odd with respect to $u$ we obtain an unbounded sequence of sign-changing solutions.
Citation: Cyril Joel Batkam, João R. Santos Júnior. Schrödinger-Kirchhoff-Poisson type systems. Communications on Pure and Applied Analysis, 2016, 15 (2) : 429-444. doi: 10.3934/cpaa.2016.15.429
##### References:
 [1] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008. [2] C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166. doi: 10.1007/s00033-013-0376-3. [3] G. Anelo, A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem, J. Math. Anal. Appl., 373 (2011), 248-251. doi: 10.1016/j.jmaa.2010.07.019. [4] G. Anelo, On a perturbed Dirichlet problem for a nonlocal differential equation of Kirchhoff type, Boundary Value Problems, (2011) doi:10.1155/2011/891430. [5] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X. [6] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057. [7] T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Comm. Contemp. Math., 234 (2004), 245-258. doi: 10.1142/S0219199704001306. [8] C. J. Batkam, High energy sign-changing solutions to Scrhödinger-Poisson type systems, arXiv:1501.05942. [9] C. J. Batkam, Multiple sign-changing solutions to a class of Kirchhoff type problems, arXiv:1501.05733. [10] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Methods Nonlinear Anal., 11 (1998), 283-293. [11] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017. [12] G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423. [13] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X. [14] G. M. Figueiredo, N. Ikoma and J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8. [15] G. M. Figueiredo and J. R. Santos Júnior, Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM Control Optim. Calc. Var., 20 (2014), 389-415. doi: 10.1051/cocv/2013068. [16] X. He and W. Zou, Existence and concentration of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035. [17] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017. [18] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. [19] J. Liu, X. Liu and Z.-Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations, 52 (2015), 565-586. doi: 10.1007/s00526-014-0724-y. [20] Z. Liu, Z.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Annali di Matematica, in press. [21] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Applied Mathematics Letters, 16 (2003), 243-248. doi: 10.1016/S0893-9659(03)80038-1. [22] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977. [23] J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff equations with radial potential, Nonlinear Anal., 75 (2012), 3470-3479. doi: 10.1016/j.na.2012.01.004. [24] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Analysis, 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005. [25] D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2008), 179-190. [26] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023. [27] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1. [28] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^N2$, Nonlinear Anal. Real World Appl., 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023. [29] F. Zhao and L. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150-2164. doi: 10.1016/j.na.2008.02.116. [30] W. Zou, On finding sign-changing solutions, J. Funct. Anal., 234 (2006), 364-419. doi: 10.1016/j.jfa.2005.09.004.

show all references

##### References:
 [1] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008. [2] C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166. doi: 10.1007/s00033-013-0376-3. [3] G. Anelo, A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem, J. Math. Anal. Appl., 373 (2011), 248-251. doi: 10.1016/j.jmaa.2010.07.019. [4] G. Anelo, On a perturbed Dirichlet problem for a nonlocal differential equation of Kirchhoff type, Boundary Value Problems, (2011) doi:10.1155/2011/891430. [5] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X. [6] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057. [7] T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Comm. Contemp. Math., 234 (2004), 245-258. doi: 10.1142/S0219199704001306. [8] C. J. Batkam, High energy sign-changing solutions to Scrhödinger-Poisson type systems, arXiv:1501.05942. [9] C. J. Batkam, Multiple sign-changing solutions to a class of Kirchhoff type problems, arXiv:1501.05733. [10] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Methods Nonlinear Anal., 11 (1998), 283-293. [11] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017. [12] G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423. [13] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X. [14] G. M. Figueiredo, N. Ikoma and J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8. [15] G. M. Figueiredo and J. R. Santos Júnior, Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM Control Optim. Calc. Var., 20 (2014), 389-415. doi: 10.1051/cocv/2013068. [16] X. He and W. Zou, Existence and concentration of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035. [17] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017. [18] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. [19] J. Liu, X. Liu and Z.-Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations, 52 (2015), 565-586. doi: 10.1007/s00526-014-0724-y. [20] Z. Liu, Z.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Annali di Matematica, in press. [21] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Applied Mathematics Letters, 16 (2003), 243-248. doi: 10.1016/S0893-9659(03)80038-1. [22] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977. [23] J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff equations with radial potential, Nonlinear Anal., 75 (2012), 3470-3479. doi: 10.1016/j.na.2012.01.004. [24] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Analysis, 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005. [25] D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2008), 179-190. [26] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023. [27] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1. [28] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^N2$, Nonlinear Anal. Real World Appl., 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023. [29] F. Zhao and L. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150-2164. doi: 10.1016/j.na.2008.02.116. [30] W. Zou, On finding sign-changing solutions, J. Funct. Anal., 234 (2006), 364-419. doi: 10.1016/j.jfa.2005.09.004.
 [1] Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022112 [2] Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 [3] Hui Guo, Tao Wang. A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28 (1) : 195-203. doi: 10.3934/era.2020013 [4] Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077 [5] Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345 [6] Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235 [7] Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure and Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004 [8] Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009 [9] Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure and Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883 [10] Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809 [11] Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151 [12] Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883 [13] Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032 [14] Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3065-3092. doi: 10.3934/cpaa.2021096 [15] Angela Pistoia, Tonia Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5651-5692. doi: 10.3934/dcds.2017245 [16] Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669 [17] Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137 [18] Congcong Li, Chunqiu Li, Jintao Wang. Statistical solution and Liouville type theorem for coupled Schrödinger-Boussinesq equations on infinite lattices. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021311 [19] Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003 [20] Kaimin Teng, Xian Wu. Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1157-1187. doi: 10.3934/cpaa.2022014

2021 Impact Factor: 1.273