Citation: |
[1] |
C. O. Alves and G. M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in $\mathbbR^N$, Nonlinear Analysis, 75 (2012), 2750-2759.doi: 10.1016/j.na.2011.11.017. |
[2] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555. |
[3] |
G. M. Figueiredo, N. Ikoma and J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931-979.doi: 10.1007/s00205-014-0747-8. |
[4] |
Y. Huang and Z. Liu, On a class of Kirchhoff type problems, Arch. Math., 102 (2014), 127-139.doi: 10.1007/s00013-014-0618-4. |
[5] |
N. Ikoma, Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials, Discrete Contin. Dyn. Syst., 35 (2015), 943-966.doi: 10.3934/dcds.2015.35.943. |
[6] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbbR^N$, Proc. Roy. Soc. Edinburgh, 129 (1999), 787-809.doi: 10.1017/S0308210500013147. |
[7] |
L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840. |
[8] |
G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbbR^3$, J. Differential Equations, 257 (2014), 566-600.doi: 10.1016/j.jde.2014.04.011. |
[9] |
Z. Liu and S. Guo, Positive solutions for asymptotically linear Schrödinger-Kirchhoff-type equations, Math. Meth. Appl. Sci., 37 (2014), 571-580.doi: 10.1002/mma.2815. |
[10] |
Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294.doi: 10.1016/j.jde.2012.05.017. |
[11] |
J. Sun and T.-F. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771-1792.doi: 10.1016/j.jde.2013.12.006. |
[12] |
M. Willem, Minimax Theorems, Birkhäuser, 1996.doi: 10.1007/978-1-4612-4146-1. |
[13] |
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$, Nonlinear Anal. Real World Appl., 12 (2011), 1278-1287.doi: 10.1016/j.nonrwa.2010.09.023. |
[14] |
Y. Wu, Y. Huang and Z. Liu, On a Kirchhoff type problem in $\mathbbR^N$, J. Math. Anal. Appl., 425 (2015), 548-564.doi: 10.1016/j.jmaa.2014.12.017. |