Citation: |
[1] |
T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^n$, Commun. in PDE, 20 (1995), 1725-1741.doi: 10.1080/03605309508821149. |
[2] |
T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26. |
[3] |
L. Caffarelli and L. Silvestre, An extension problems related to the fractional Laplacian, Comm. PDE, 32 (2007), 1245C1260.2.doi: 10.1080/03605300600987306. |
[4] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025. |
[5] |
A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilnear equations, Comm. PDE, 36 (2011), 1353C1384.doi: 10.1080/03605302.2011.562954. |
[6] |
M. Cheng, Bound state for the fractional Schrödinger equation with undounded potential, J. Math. Phys., 53 (2012), 043507.doi: 10.1063/1.3701574. |
[7] |
G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Comm. Pure Appl. Anal., 13 (2014), 2359-2376.doi: 10.3934/cpaa.2014.13.2359. |
[8] |
J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.doi: 10.1016/j.jde.2013.10.006. |
[9] |
J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235.doi: 10.2140/apde.2015.8.1165. |
[10] |
E. Di Nezza, G. Patalluci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004. |
[11] |
J. Dong and M.Xu, Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105.doi: 10.1063/1.2749172. |
[12] |
M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.doi: 10.1088/0951-7715/28/6/1937. |
[13] |
P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262.doi: 10.1017/S0308210511000746. |
[14] |
P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98.doi: 10.1007/s00526-014-0778-x. |
[15] |
P. Felmer and C. Torres, Radial symmetry of ground state for a fractional nonlinear Schrödinger equation, Comm. Pure and Applied Ana., 13 (2014), 2395-2406.doi: 10.3934/cpaa.2014.13.2395. |
[16] |
X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104.doi: 10.1063/1.2235026. |
[17] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.doi: 10.1016/S0375-9601(00)00201-2. |
[18] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.doi: 10.1103/PhysRevE.66.056108. |
[19] |
J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989.doi: 10.1007/978-1-4757-2061-7. |
[20] |
E. de Oliveira, F. Costa and J. Vaz, The fractional Schrödinger equation for delta potentials, J. Math. Phys., 51 (2012), 123517.doi: 10.1063/1.3525976. |
[21] |
P. Rabinowitz, Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., 65, 1986. |
[22] |
P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291.doi: 10.1007/BF00946631. |
[23] |
R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032. |
[24] |
R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. |
[25] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501.doi: 10.1063/1.4793990. |
[26] |
J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity, arXiv:1502.02221v1. |