• Previous Article
    Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities
  • CPAA Home
  • This Issue
  • Next Article
    Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter
March  2016, 15(2): 535-547. doi: 10.3934/cpaa.2016.15.535

Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well

1. 

Departamento de Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo, Perú, Chile

Received  July 2015 Revised  December 2015 Published  January 2016

In this paper we study the non-linear fractional Schrödinger equation with steep potential well \begin{eqnarray} (-\Delta)^{\alpha}u + \lambda V(x)u = f(x,u)\ in\ R^{n}, \ u\in H^{\alpha}(R^n), \end{eqnarray} where $(-\Delta)^\alpha$ ($\alpha \in (0,1)$) denotes the fractional Laplacian, $\lambda$ is a parameter, $V\in C(\mathbb{R}^n)$ and $V^{-1}(0)$ has nonempty interior. Under some suitable conditions, the existence of nontrivial solutions are obtained by using variational methods. Furthermore, the phenomenon of concentration of solutions is also explored.
Citation: César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535
References:
[1]

T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^n$, Commun. in PDE, 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.

[2]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26.

[3]

L. Caffarelli and L. Silvestre, An extension problems related to the fractional Laplacian, Comm. PDE, 32 (2007), 1245C1260.2. doi: 10.1080/03605300600987306.

[4]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.

[5]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilnear equations, Comm. PDE, 36 (2011), 1353C1384. doi: 10.1080/03605302.2011.562954.

[6]

M. Cheng, Bound state for the fractional Schrödinger equation with undounded potential, J. Math. Phys., 53 (2012), 043507. doi: 10.1063/1.3701574.

[7]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Comm. Pure Appl. Anal., 13 (2014), 2359-2376. doi: 10.3934/cpaa.2014.13.2359.

[8]

J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. doi: 10.1016/j.jde.2013.10.006.

[9]

J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235. doi: 10.2140/apde.2015.8.1165.

[10]

E. Di Nezza, G. Patalluci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[11]

J. Dong and M.Xu, Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105. doi: 10.1063/1.2749172.

[12]

M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961. doi: 10.1088/0951-7715/28/6/1937.

[13]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[14]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98. doi: 10.1007/s00526-014-0778-x.

[15]

P. Felmer and C. Torres, Radial symmetry of ground state for a fractional nonlinear Schrödinger equation, Comm. Pure and Applied Ana., 13 (2014), 2395-2406. doi: 10.3934/cpaa.2014.13.2395.

[16]

X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104. doi: 10.1063/1.2235026.

[17]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.

[18]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.

[19]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.

[20]

E. de Oliveira, F. Costa and J. Vaz, The fractional Schrödinger equation for delta potentials, J. Math. Phys., 51 (2012), 123517. doi: 10.1063/1.3525976.

[21]

P. Rabinowitz, Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., 65, 1986.

[22]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291. doi: 10.1007/BF00946631.

[23]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[25]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.

[26]

J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity,, \emph{arXiv:1502.02221v1}., (). 

show all references

References:
[1]

T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^n$, Commun. in PDE, 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.

[2]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26.

[3]

L. Caffarelli and L. Silvestre, An extension problems related to the fractional Laplacian, Comm. PDE, 32 (2007), 1245C1260.2. doi: 10.1080/03605300600987306.

[4]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.

[5]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilnear equations, Comm. PDE, 36 (2011), 1353C1384. doi: 10.1080/03605302.2011.562954.

[6]

M. Cheng, Bound state for the fractional Schrödinger equation with undounded potential, J. Math. Phys., 53 (2012), 043507. doi: 10.1063/1.3701574.

[7]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Comm. Pure Appl. Anal., 13 (2014), 2359-2376. doi: 10.3934/cpaa.2014.13.2359.

[8]

J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. doi: 10.1016/j.jde.2013.10.006.

[9]

J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235. doi: 10.2140/apde.2015.8.1165.

[10]

E. Di Nezza, G. Patalluci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[11]

J. Dong and M.Xu, Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105. doi: 10.1063/1.2749172.

[12]

M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961. doi: 10.1088/0951-7715/28/6/1937.

[13]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[14]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98. doi: 10.1007/s00526-014-0778-x.

[15]

P. Felmer and C. Torres, Radial symmetry of ground state for a fractional nonlinear Schrödinger equation, Comm. Pure and Applied Ana., 13 (2014), 2395-2406. doi: 10.3934/cpaa.2014.13.2395.

[16]

X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104. doi: 10.1063/1.2235026.

[17]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.

[18]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.

[19]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.

[20]

E. de Oliveira, F. Costa and J. Vaz, The fractional Schrödinger equation for delta potentials, J. Math. Phys., 51 (2012), 123517. doi: 10.1063/1.3525976.

[21]

P. Rabinowitz, Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., 65, 1986.

[22]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291. doi: 10.1007/BF00946631.

[23]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[25]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.

[26]

J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity,, \emph{arXiv:1502.02221v1}., (). 

[1]

Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058

[2]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[3]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[4]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1497-1519. doi: 10.3934/cpaa.2021030

[5]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic and Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[6]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[7]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[8]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[9]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[10]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[11]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[12]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[13]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[14]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[15]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[16]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[17]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[18]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[19]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1953-1968. doi: 10.3934/cpaa.2021111

[20]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]