-
Previous Article
Center problem for systems with two monomial nonlinearities
- CPAA Home
- This Issue
-
Next Article
Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities
Concentration of solutions for the fractional Nirenberg problem
1. | School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475004, China |
References:
[1] |
W. Abdelhedi and H. Chtioui, On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal., 265 (2013), 2937-2955.
doi: 10.1016/j.jfa.2013.08.005. |
[2] |
A. Bahri, Critical Points at Infnity in Some Variational Problems, Research Notes in Mathematics, Vol.182, Longman-Pitman, 1989.
doi: 0-582-02164-2. |
[3] |
A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology on the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[4] |
A. Bahri and J. M. Coron, The scalar crvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172.
doi: 10.1016/0022-1236(91)90026-2. |
[5] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001. |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
D. M. Cao, E. S. Noussair and S. Yan, On the scalar curvature equation $-\Delta u=(1+\varepsilon K)u^{(N+2)/(N-2)}$ in $\mathbb{R}^N2$, Calc. Var. Partial Differential Equations, 15 (2002), 403-419.
doi: 10.1007/s00526-002-0137-1. |
[8] |
D. M. Cao and S. J. Peng, Solutions for the Prescribing Mean Curvature equation, Acta Math. Appl. Sinica, English Series, 24 (2008), 497-510.
doi: 10.1007/s10255-008-8051-8. |
[9] |
D. M. Cao and S. J. Peng, Concentration of solutions for the Yamabe problem on half-spaces, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 73-99.
doi: 10.1017/S0308210511000291. |
[10] |
D. M. Cao, S. J. Peng and S. Yan, On the Webster scalar curvature problem on the CR sphere with a cylindrical- type symmetry, J. Geom. Anal., 23 (2013), 1674-1702.
doi: 10.1007/s12220-012-9301-9. |
[11] |
S. Y. Alice Chang and M. del Mar González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016. |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[13] |
G. Chen and Y. Zheng, A perturbation result for the $Q_\gamma$ curvature problem on $S^n$, Nonlinear Anal., 97 (2014), 4-14.
doi: 10.1016/j.na.2013.11.010. |
[14] |
G. Chen and Y. Zheng, Peak solutions for the fractional Nirenberg problem, Nonlinear Anal., 122 (2015), 100-124. |
[15] |
J. Dávila, M. del Pino and Y. Sire, Nondegeneracy of the bubble in the critical case for nonlocal equations, Proc. Amer. Math. Soc., 141 (2013), 3865-3870.
doi: 10.1090/S0002-9939-2013-12177-5. |
[16] |
Z. Djadli, E. Hebey and M. Ledoux, Paneitz-type operators and applications, Duke Math. J., 104 (2000), 129-169.
doi: 10.1215/S0012-7094-00-10416-4. |
[17] |
M. del Mar González, R. Mazzeo and Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22 (2012), 845-863.
doi: 10.1007/s12220-011-9217-9. |
[18] |
M. del Mar González and J. Qing, Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, 6 (2013), 1535-1576.
doi: 10.2140/apde.2013.6.1535. |
[19] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[20] |
C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc., 46 (1992), 557-565.
doi: 10.1112/jlms/s2-46.3.557. |
[21] |
C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89-118.
doi: 10.1007/s00222-002-0268-1. |
[22] |
T. Jin, Y. Li and J. Xiong, The Nirenberg problem and its generalizations: A unified approach, preprint, arXiv:math/1411.5743. |
[23] |
T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[24] |
T. Jin, Y. Li and J. Xiong, On a fractional nirenberg problem, part II: Existence of solutions, Int. Math. Res. Not., 2015 (2015), 1555-1589. |
[25] |
Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. |
[26] |
Y. Li, P. Mastrolia and D. D. Monticelli, On conformally invariant equations on $R^n$-II. Exponential invariance, Nonlinear Anal., 75 (2012), 5194-5211.
doi: 10.1016/j.na.2012.04.036. |
[27] |
Y. Li, P. Mastrolia and D. D. Monticelli, On conformally invariant equations on $R^n$, Nonlinear Anal., 95 (2014), 339-361.
doi: 10.1016/j.na.2013.09.016. |
[28] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[29] |
Z. Liu, Concentration phenomena for the Paneitz curvature equation in $\mathbb{R}^N2$, Adv. Nonlinear Stud., 13 (2013), 837-851. |
[30] |
Z. Liu, Arbitrary many peak solutions for a bi-harmonic equation with nearly critical growth, J. Math. Anal. Appl., 398 (2013), 671-691. |
[31] |
S. M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 036. 3.
doi: 10.3842/SIGMA.2008.036. |
[32] |
S. J. Peng and J. Zhou, Concentration of solutions for a Paneitz type problem, Discrete Continuous Dynamic Systems, 26 (2010), 1055-1072.
doi: 10.3934/dcds.2010.26.1055. |
[33] |
L. J. Peterson, Conformally covariant pseudo-differential operators, Differential Geom. Appl., 13 (2000), 197-211.
doi: 10.1016/S0926-2245(00)00023-1. |
[34] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3. |
[35] |
S. Yan, Concentration of solutions for the scalar curvature equation on $R^N$, J. Differential Equations, 163 (2000), 239-264.
doi: 10.1006/jdeq.1999.3718. |
show all references
References:
[1] |
W. Abdelhedi and H. Chtioui, On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal., 265 (2013), 2937-2955.
doi: 10.1016/j.jfa.2013.08.005. |
[2] |
A. Bahri, Critical Points at Infnity in Some Variational Problems, Research Notes in Mathematics, Vol.182, Longman-Pitman, 1989.
doi: 0-582-02164-2. |
[3] |
A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology on the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[4] |
A. Bahri and J. M. Coron, The scalar crvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172.
doi: 10.1016/0022-1236(91)90026-2. |
[5] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001. |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
D. M. Cao, E. S. Noussair and S. Yan, On the scalar curvature equation $-\Delta u=(1+\varepsilon K)u^{(N+2)/(N-2)}$ in $\mathbb{R}^N2$, Calc. Var. Partial Differential Equations, 15 (2002), 403-419.
doi: 10.1007/s00526-002-0137-1. |
[8] |
D. M. Cao and S. J. Peng, Solutions for the Prescribing Mean Curvature equation, Acta Math. Appl. Sinica, English Series, 24 (2008), 497-510.
doi: 10.1007/s10255-008-8051-8. |
[9] |
D. M. Cao and S. J. Peng, Concentration of solutions for the Yamabe problem on half-spaces, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 73-99.
doi: 10.1017/S0308210511000291. |
[10] |
D. M. Cao, S. J. Peng and S. Yan, On the Webster scalar curvature problem on the CR sphere with a cylindrical- type symmetry, J. Geom. Anal., 23 (2013), 1674-1702.
doi: 10.1007/s12220-012-9301-9. |
[11] |
S. Y. Alice Chang and M. del Mar González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016. |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[13] |
G. Chen and Y. Zheng, A perturbation result for the $Q_\gamma$ curvature problem on $S^n$, Nonlinear Anal., 97 (2014), 4-14.
doi: 10.1016/j.na.2013.11.010. |
[14] |
G. Chen and Y. Zheng, Peak solutions for the fractional Nirenberg problem, Nonlinear Anal., 122 (2015), 100-124. |
[15] |
J. Dávila, M. del Pino and Y. Sire, Nondegeneracy of the bubble in the critical case for nonlocal equations, Proc. Amer. Math. Soc., 141 (2013), 3865-3870.
doi: 10.1090/S0002-9939-2013-12177-5. |
[16] |
Z. Djadli, E. Hebey and M. Ledoux, Paneitz-type operators and applications, Duke Math. J., 104 (2000), 129-169.
doi: 10.1215/S0012-7094-00-10416-4. |
[17] |
M. del Mar González, R. Mazzeo and Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22 (2012), 845-863.
doi: 10.1007/s12220-011-9217-9. |
[18] |
M. del Mar González and J. Qing, Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, 6 (2013), 1535-1576.
doi: 10.2140/apde.2013.6.1535. |
[19] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[20] |
C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc., 46 (1992), 557-565.
doi: 10.1112/jlms/s2-46.3.557. |
[21] |
C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89-118.
doi: 10.1007/s00222-002-0268-1. |
[22] |
T. Jin, Y. Li and J. Xiong, The Nirenberg problem and its generalizations: A unified approach, preprint, arXiv:math/1411.5743. |
[23] |
T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[24] |
T. Jin, Y. Li and J. Xiong, On a fractional nirenberg problem, part II: Existence of solutions, Int. Math. Res. Not., 2015 (2015), 1555-1589. |
[25] |
Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. |
[26] |
Y. Li, P. Mastrolia and D. D. Monticelli, On conformally invariant equations on $R^n$-II. Exponential invariance, Nonlinear Anal., 75 (2012), 5194-5211.
doi: 10.1016/j.na.2012.04.036. |
[27] |
Y. Li, P. Mastrolia and D. D. Monticelli, On conformally invariant equations on $R^n$, Nonlinear Anal., 95 (2014), 339-361.
doi: 10.1016/j.na.2013.09.016. |
[28] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[29] |
Z. Liu, Concentration phenomena for the Paneitz curvature equation in $\mathbb{R}^N2$, Adv. Nonlinear Stud., 13 (2013), 837-851. |
[30] |
Z. Liu, Arbitrary many peak solutions for a bi-harmonic equation with nearly critical growth, J. Math. Anal. Appl., 398 (2013), 671-691. |
[31] |
S. M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 036. 3.
doi: 10.3842/SIGMA.2008.036. |
[32] |
S. J. Peng and J. Zhou, Concentration of solutions for a Paneitz type problem, Discrete Continuous Dynamic Systems, 26 (2010), 1055-1072.
doi: 10.3934/dcds.2010.26.1055. |
[33] |
L. J. Peterson, Conformally covariant pseudo-differential operators, Differential Geom. Appl., 13 (2000), 197-211.
doi: 10.1016/S0926-2245(00)00023-1. |
[34] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3. |
[35] |
S. Yan, Concentration of solutions for the scalar curvature equation on $R^N$, J. Differential Equations, 163 (2000), 239-264.
doi: 10.1006/jdeq.1999.3718. |
[1] |
Pak Tung Ho, Rong Tang. Fractional Yamabe solitons and fractional Nirenberg problem. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3215-3234. doi: 10.3934/cpaa.2021103 |
[2] |
Isabel Flores. Singular solutions of the Brezis-Nirenberg problem in a ball. Communications on Pure and Applied Analysis, 2009, 8 (2) : 673-682. doi: 10.3934/cpaa.2009.8.673 |
[3] |
Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055 |
[4] |
Angkana Rüland, Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems and Imaging, 2019, 13 (5) : 1023-1044. doi: 10.3934/ipi.2019046 |
[5] |
Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 |
[6] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[7] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[8] |
Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058 |
[9] |
Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317 |
[10] |
Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027 |
[11] |
Oleg V. Kaptsov, Alexey V. Schmidt. Reduction of three-dimensional model of the far turbulent wake to one-dimensional problem. Conference Publications, 2011, 2011 (Special) : 794-802. doi: 10.3934/proc.2011.2011.794 |
[12] |
Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465 |
[13] |
Yongfu Wang. Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible Magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4973-4994. doi: 10.3934/cpaa.2020223 |
[14] |
Zheng-Chao Han, YanYan Li. On the local solvability of the Nirenberg problem on $\mathbb S^2$. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 607-615. doi: 10.3934/dcds.2010.28.607 |
[15] |
Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503 |
[16] |
César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 |
[17] |
Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3065-3092. doi: 10.3934/cpaa.2021096 |
[18] |
Michael L. Frankel, Victor Roytburd. A Finite-dimensional attractor for a nonequilibrium Stefan problem with heat losses. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 35-62. doi: 10.3934/dcds.2005.13.35 |
[19] |
Yutian Lei. On finite energy solutions of fractional order equations of the Choquard type. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1497-1515. doi: 10.3934/dcds.2019064 |
[20] |
Belgacem Rahal, Cherif Zaidi. On finite Morse index solutions of higher order fractional elliptic equations. Evolution Equations and Control Theory, 2021, 10 (3) : 575-597. doi: 10.3934/eect.2020081 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]