\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and concentration of semiclassical solutions for Hamiltonian elliptic system

Abstract Related Papers Cited by
  • In this paper, we study the following Hamiltonian elliptic system with gradient term \begin{eqnarray} &-\epsilon^{2}\Delta \psi +\epsilon b\cdot \nabla \psi +\psi+V(x)\varphi=K(x)f(|\eta|)\varphi \ \ \hbox{in}~\mathbb{R}^{N},\\ &-\epsilon^{2}\Delta \varphi -\epsilon b\cdot \nabla \varphi +\varphi+V(x)\psi=K(x)f(|\eta|)\psi \ \ \hbox{in}~\mathbb{R}^{N}, \end{eqnarray} where $\eta=(\psi,\varphi):\mathbb{R}^{N}\rightarrow\mathbb{R}^{2}$, $V, K\in C(\mathbb{R}^{N}, \mathbb{R})$, $\epsilon$ is a small positive parameter and $b$ is a constant vector. Suppose that $V(x)$ is sign-changing and has at least one global minimum, and $K(x)$ has at least one global maximum, we prove the existence, exponential decay and concentration phenomena of semiclassical ground state solutions for all sufficiently small $\epsilon>0$.
    Mathematics Subject Classification: 35J50, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Ackermann, A nonlinear superposition principle and multibump solution of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 423-443.doi: 10.1016/j.jfa.2005.11.010.

    [2]

    A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300.doi: 10.1007/s002050050067.

    [3]

    A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations, 191 (2003), 348-376.doi: 10.1016/S0022-0396(03)00017-2.

    [4]

    A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems, Nonlinear Differ. Equ. Appl., 12 (2005), 459-479.doi: 10.1007/s00030-005-0022-7.

    [5]

    T. Bartsch and D. G. De Figueiredo, Infinitely mang solutions of nonlinear elliptic systems, in: Progr. Nonlinear Differential Equations Appl. Vol. 35, Birkhäuser, Basel, Switzerland, (1999), 51-67.

    [6]

    T. Bartsch and Y. H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nach., 279 (2006), 1267-1288.doi: 10.1002/mana.200410420.

    [7]

    J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200.

    [8]

    J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, II, Calc. Var. Part. Diffe. Equ., 18 (2003), 207-219.doi: 10.1007/s00526-002-0191-8.

    [9]

    D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear. Anal., 331 (1998), 211-234.doi: 10.1016/S0362-546X(97)00548-8.

    [10]

    Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.doi: 10.1142/9789812709639.

    [11]

    Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.doi: 10.1016/j.jde.2010.03.022.

    [12]

    Y. H. Ding and X. Y, Liu, Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscr. Math., 140 (2013), 51-82.doi: 10.1007/s00229-011-0530-1.

    [13]

    Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.doi: 10.1016/j.jde.2012.01.023.

    [14]

    Y. H. Ding and X. Y. Liu, On Semiclassical ground states of a nonlinear Dirac equation, Rev. Math. Phys., 24 (2012), 1250029.doi: 10.1142/S0129055X12500298.

    [15]

    Y. H. Ding, C. Lee and B. Ruf, On semiclassical states of a nonlinear Dirac equation, Proc. Roy. Soc. Edinb. A, 143 (2013), 765-790.doi: 10.1017/S0308210511001752.

    [16]

    Y. H. Ding, C. Lee and F. K. Zhao, Semiclassical limits of ground state solutions to Schrödinger systems, Calc. Var. Partial Differential Equations, 51 (2014), 725-760.doi: 10.1007/s00526-013-0693-6.

    [17]

    Y. H. Ding and J. C. Wei, Stationary states of nonlinear Dirac equations with general potentials, Rev. Math. Phys., 20 (2008), 1007-1032.doi: 10.1142/S0129055X0800350X.

    [18]

    M. Esteban and E. Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys., 171 (1995), 250-323.

    [19]

    A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.doi: 10.1016/0022-1236(86)90096-0.

    [20]

    C. F. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Diffe. Equ., 21 (1996), 787-820.doi: 10.1080/03605309608821208.

    [21]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.doi: 10.1007/978-3-642-61798-0.

    [22]

    S. Y. He, R. M. Zhang and F. K. Zhao, A note on a superlinear and periodic elliptic system in the whole space, Comm. Pure. Appl. Anal., 10 (2011), 1149-1163.doi: 10.3934/cpaa.2011.10.1149.

    [23]

    L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Part. Diffe. Equ., 21 (2004), 287-318.doi: 10.1007/s00526-003-0261-6.

    [24]

    Y. Y. Li, On singularly perturbed elliptic equation, Adv. Diff. Eqns, 2 (1997), 955-980.

    [25]

    G. Li and J. Yang, Asymptotically linear elliptic systems, Commun. Part. Diffe. Equ., 29 (2004), 925-954.doi: 10.1081/PDE-120037337.

    [26]

    P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

    [27]

    F. Liao, X. H. Tang and J. Zhang, Existence of solutions for periodic elliptic system with general superlinear nonlinearity, Z. Angew. Math. Phys., 66 (2015), 689-701.doi: 10.1007/s00033-014-0425-6.

    [28]

    Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253.

    [29]

    M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.doi: 10.1007/s002080200327.

    [30]

    B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $\mathbbR^N$, Adv. Differential Equations, 5 (2000), 1445-1464.

    [31]

    A. Szulkin and T. Weth, Ground state solutions for some indefinite problems, J. Funct. Anal., 257 (2009), 3802-3822.doi: 10.1016/j.jfa.2009.09.013.

    [32]

    X. H. Tang, Ground state solutions of Nehari-Pankov type for a superlinear Hamiltonian elliptic system on $\mathbbR^N$, Canad. Math. Bull., 58 (2015), 651-663.doi: 10.4153/CMB-2015-019-2.

    [33]

    X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.

    [34]

    J. Wang, J. X. Xu and F. B. Zhang, Existence of semiclassical ground-state solutions for semilinear elliptic systems, Pro. Royal Soci. Edinb: Sec. A, 142 (2012), 867-895.doi: 10.1017/S0308210511000254.

    [35]

    L. R. Xia, J. Zhang and F. K. Zhao, Ground state solutions for superlinear elliptic systems on $\mathbbR^N$, J. Math. Anal. Appl., 401 (2013), 518-525.doi: 10.1016/j.jmaa.2012.12.041.

    [36]

    M. B. Yang, W. X. Chen and Y. H. Ding, Solutions of a class of Hamiltonian elliptic systems in $\mathbbR^N$, J. Math. Anal. Appl., 352 (2010), 338-349.doi: 10.1016/j.jmaa.2009.07.052.

    [37]

    F. K. Zhao, L. G. Zhao and Y. H. Ding, Infinitly mang solutions for asymptotically linear periodic Hamiltonian system, ESAIM: Control, Optim. Calc. Vari., 16 (2010), 77-91.doi: 10.1051/cocv:2008064.

    [38]

    F. K. Zhao, L. G. Zhao and Y. H. Ding, Multiple solutions for asympototically linear elliptic systems, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 673-688.doi: 10.1007/s00030-008-7080-6.

    [39]

    F. K. Zhao, L. G. Zhao and Y. H. Ding, Multiple solution for a superlinear and periodic ellipic system on $\mathbbR^N$, Z. Angew. Math. Phys., 62 (2011), 495-511.

    [40]

    F. K. Zhao, L. G. Zhao and Y. H. Ding, A note on superlinear Hamiltonian elliptic systems, J. Math. Phy., 50 (2009), 112702.doi: 10.1063/1.3256120.

    [41]

    F. K. Zhao and Y. H. Ding, On Hamiltonian elliptic systems with periodic or non-periodic potentials, J. Differential Equations, 249 (2010), 2964-2985.doi: 10.1016/j.jde.2010.09.014.

    [42]

    R. M. Zhang, J. Chen and F. K. Zhao, Multiple solutions for superlinear elliptic systems of Hamiltonian type, Disc. Contin. Dyn. Syst. Ser. A, 30 (2011), 1249-1262.doi: 10.3934/dcds.2011.30.1249.

    [43]

    J. Zhang, W. P. Qin and F. K. Zhao, Existence and multiplicity of solutions for asymptotically linear nonperiodic Hamiltonian elliptic system, J. Math. Anal. Appl., 399 (2013), 433-441.doi: 10.1016/j.jmaa.2012.10.030.

    [44]

    J. Zhang, X. H. Tang and W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 95 (2014), 1-10.doi: 10.1016/j.na.2013.07.027.

    [45]

    J. Zhang, X. H. Tang and W. Zhang, Semiclassical solutions for a class of Schrödinger system with magnetic potentials, J. Math. Anal. Appl., 414 (2014), 357-371.doi: 10.1016/j.jmaa.2013.12.060.

    [46]

    J. Zhang, X. H. Tang and W. Zhang, On semiclassical ground state solutions for Hamiltonian elliptic systems, Appl. Anal., 94 (2015), 1380-1396.doi: 10.1080/00036811.2014.931940.

    [47]

    W. Zhang, X. H. Tang and J. Zhang, Ground state solutions for a diffusion system, Comput. Math. Appl., 69 (2015), 337-346.doi: 10.1016/j.camwa.2014.12.012.

    [48]

    M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return