March  2016, 15(2): 657-699. doi: 10.3934/cpaa.2016.15.657

Some observations on the Green function for the ball in the fractional Laplace framework

1. 

Dipartimento di Matematica "Federigo Enriques", Università degli Studi di Milano, Via Cesare Saldini, 50, I-20133, Milano, Italy

Received  March 2015 Revised  November 2015 Published  January 2016

We consider a fractional Laplace equation and we give a self-contained elementary exposition of the representation formula for the Green function on the ball. In this exposition, only elementary calculus techniques will be used, in particular, no probabilistic methods or computer assisted algebraic manipulations are needed. The main result in itself is not new (see for instance [2, 9]), however we believe that the exposition is original and easy to follow, hence we hope that this paper will be accessible to a wide audience of young researchers and graduate students that want to approach the subject, and even to professors that would like to present a complete proof in a PhD or Master Degree course.
Citation: Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657
References:
[1]

Milton Abramowitz and Irene Anne Stegun eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York; National Bureau of Standards, Washington, DC, 1984.

[2]

R. M. Blumenthal, R. K. Getoor and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc., 99 (1961), 540-554.

[3]

Claudia Bucur and Enrico Valdinoci, Nonlocal diffusion and applications, accepted for Publication for the Springer Series Lecture Notes of the Unione Matematica Italiana, preprint arXiv:1504.08292, 2015.

[4]

Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[5]

Bartłomiej Dyda, Fractional Hardy inequality with a remainder term, Colloq. Math., 122 (2011), 59-67. doi: 10.4064/cm122-1-6.

[6]

Bartłomiej Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555. doi: 10.2478/s13540-012-0038-8.

[7]

Lawrence C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010. doi: 10.1090/gsm/019.

[8]

Yitzhak Katznelson, An Introduction to Harmonic Analysis, Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition, 2004. doi: 10.1017/CBO9781139165372.

[9]

Tadeusz Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.

[10]

N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.

[11]

Michael Reed and Barry Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York-London, 1972.

[12]

Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.

[13]

Richard L. Wheeden and Antoni Zygmund, Measure and Integral, An introduction to real analysis, Pure and Applied Mathematics, Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.

show all references

References:
[1]

Milton Abramowitz and Irene Anne Stegun eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York; National Bureau of Standards, Washington, DC, 1984.

[2]

R. M. Blumenthal, R. K. Getoor and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc., 99 (1961), 540-554.

[3]

Claudia Bucur and Enrico Valdinoci, Nonlocal diffusion and applications, accepted for Publication for the Springer Series Lecture Notes of the Unione Matematica Italiana, preprint arXiv:1504.08292, 2015.

[4]

Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[5]

Bartłomiej Dyda, Fractional Hardy inequality with a remainder term, Colloq. Math., 122 (2011), 59-67. doi: 10.4064/cm122-1-6.

[6]

Bartłomiej Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555. doi: 10.2478/s13540-012-0038-8.

[7]

Lawrence C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010. doi: 10.1090/gsm/019.

[8]

Yitzhak Katznelson, An Introduction to Harmonic Analysis, Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition, 2004. doi: 10.1017/CBO9781139165372.

[9]

Tadeusz Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.

[10]

N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.

[11]

Michael Reed and Barry Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York-London, 1972.

[12]

Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.

[13]

Richard L. Wheeden and Antoni Zygmund, Measure and Integral, An introduction to real analysis, Pure and Applied Mathematics, Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[2]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure and Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[3]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[4]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[5]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[6]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

[7]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[8]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[9]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[10]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[11]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[12]

Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157

[13]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[14]

Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146

[15]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[16]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure and Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[19]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[20]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (299)
  • HTML views (0)
  • Cited by (33)

Other articles
by authors

[Back to Top]