• Previous Article
    Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity
  • CPAA Home
  • This Issue
  • Next Article
    A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis
May  2016, 15(3): 807-830. doi: 10.3934/cpaa.2016.15.807

A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type

1. 

Department of Mathematics, University of Connecticut, Storrs, CT 06269

Received  April 2015 Revised  October 2015 Published  February 2016

We prove there are no positive solutions with slow decay rates to higher order elliptic system \begin{eqnarray} \left\{ \begin{array}{c} \left( -\Delta \right) ^{m}u=\left\vert x\right\vert ^{a}v^{p} \\ \left( -\Delta \right) ^{m}v=\left\vert x\right\vert ^{b}u^{q} \end{array} \text{ in }\mathbb{R}^{N}\right. \end{eqnarray} if $p\geq 1,$ $q\geq 1,$ $\left( p,q\right) \neq \left( 1,1\right) $ satisfies $\frac{1+\frac{a}{N}}{p+1}+\frac{1+\frac{b}{N}}{q+1}>1-\frac{2m}{N} $ and \begin{eqnarray} \max \left( \frac{2m\left( p+1\right) +a+bp}{pq-1},\frac{2m\left( q+1\right) +aq+b}{pq-1}\right) >N-2m-1. \end{eqnarray} Moreover, if $N=2m+1$ or $N=2m+2,$ this system admits no positive solutions with slow decay rates if $p\geq 1,$ $q\geq 1,$ $\left( p,q\right) \neq \left( 1,1\right) $ satisfies $\frac{1}{ p+1}+\frac{1}{q+1}>1-\frac{2m}{N}.$
Citation: Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807
References:
[1]

F. Arthur, X. Yan and M. Zhao, A Liouville theorem for higher order elliptic system, Discrete Contin. Dyn. Syst., 34 (2014), 2513-2533. doi: 10.3934/dcds.2014.34.3317.

[2]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems, Indiana. J., 51 (2002), 37-51.

[3]

C. Cowan, A Liouville theorem for a fourth order Hé non equation, Adv. Nonlinear Stud., 14 (2014), 767-776.

[4]

M. Fazly, Liouville theorems for the polyharmonic Hé non-Lane-Emden system, Methods. Appl. Anal., 21 (2014), 265-281. doi: 10.4310/MAA.2014.v21.n2.a5.

[5]

M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 34 (2014), 2513-2533. doi: 10.3934/dcds.2014.34.2513.

[6]

P. Felmer and D. G. de Figueiredo, A Liouville-type Theorem for elliptic systems, Ann. Sc. Norm. Sup. Pisa, XXI (1994), 387-397.

[7]

C.-S. Lin, A classification of solutions of a,conformally invariant fourth order equation in $\mathbbR^n$, Comment. Math. Helv., 73 (1998), 206-231. doi: 10.1007/s000140050052.

[8]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$, J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.

[9]

E. Mitidieri, A Rellich type identity and applications, Comm. P.D.E., 18 (1993), 125-151. doi: 10.1080/03605309308820923.

[10]

E. Mitidieri, Non-existence of positive solutions of semilinear elliptic systems in $\mathbbR^n$, Diff. Int. Eq., 9 (1996), 465-479.

[11]

Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon equations, Adv. Differential Equations, 17 (2012), 605-634.

[12]

Q. H. Phan and Ph. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equaions, J. Diff. Equ., 252 (2012), 2544-2562. doi: 10.1016/j.jde.2011.09.022.

[13]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8.

[14]

J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, Discourses in Mathematics and its Applications, 3 (1994), 55-68.

[15]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Diff. Int. Eq., 9 (1996), 635-653.

[16]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden systems, Atti Sem. mat. Fis. Univ. Modena, 46 suppl (1998), 369-380.

[17]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. in Math., 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014.

[18]

M. A. Souto, Sobre a existência de soluçōes positivas para sistemas cooperativos nāo lineares, PhD thesis, Unicamp (1992).

[19]

J. Villavert, Qualitative properties of solutions for an integral system related to the Hardy-Sobolev inequality, J. Differential Equations, 258 (2015), 1685-1714. doi: 10.1016/j.jde.2014.11.011.

[20]

X. Yan, A Liouville theorem for higher order elliptic system, J. Math. Anal. Appl., 387 (2012), 153-165. doi: 10.1016/j.jmaa.2011.08.081.

show all references

References:
[1]

F. Arthur, X. Yan and M. Zhao, A Liouville theorem for higher order elliptic system, Discrete Contin. Dyn. Syst., 34 (2014), 2513-2533. doi: 10.3934/dcds.2014.34.3317.

[2]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems, Indiana. J., 51 (2002), 37-51.

[3]

C. Cowan, A Liouville theorem for a fourth order Hé non equation, Adv. Nonlinear Stud., 14 (2014), 767-776.

[4]

M. Fazly, Liouville theorems for the polyharmonic Hé non-Lane-Emden system, Methods. Appl. Anal., 21 (2014), 265-281. doi: 10.4310/MAA.2014.v21.n2.a5.

[5]

M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 34 (2014), 2513-2533. doi: 10.3934/dcds.2014.34.2513.

[6]

P. Felmer and D. G. de Figueiredo, A Liouville-type Theorem for elliptic systems, Ann. Sc. Norm. Sup. Pisa, XXI (1994), 387-397.

[7]

C.-S. Lin, A classification of solutions of a,conformally invariant fourth order equation in $\mathbbR^n$, Comment. Math. Helv., 73 (1998), 206-231. doi: 10.1007/s000140050052.

[8]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$, J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.

[9]

E. Mitidieri, A Rellich type identity and applications, Comm. P.D.E., 18 (1993), 125-151. doi: 10.1080/03605309308820923.

[10]

E. Mitidieri, Non-existence of positive solutions of semilinear elliptic systems in $\mathbbR^n$, Diff. Int. Eq., 9 (1996), 465-479.

[11]

Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon equations, Adv. Differential Equations, 17 (2012), 605-634.

[12]

Q. H. Phan and Ph. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equaions, J. Diff. Equ., 252 (2012), 2544-2562. doi: 10.1016/j.jde.2011.09.022.

[13]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8.

[14]

J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, Discourses in Mathematics and its Applications, 3 (1994), 55-68.

[15]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Diff. Int. Eq., 9 (1996), 635-653.

[16]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden systems, Atti Sem. mat. Fis. Univ. Modena, 46 suppl (1998), 369-380.

[17]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. in Math., 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014.

[18]

M. A. Souto, Sobre a existência de soluçōes positivas para sistemas cooperativos nāo lineares, PhD thesis, Unicamp (1992).

[19]

J. Villavert, Qualitative properties of solutions for an integral system related to the Hardy-Sobolev inequality, J. Differential Equations, 258 (2015), 1685-1714. doi: 10.1016/j.jde.2014.11.011.

[20]

X. Yan, A Liouville theorem for higher order elliptic system, J. Math. Anal. Appl., 387 (2012), 153-165. doi: 10.1016/j.jmaa.2011.08.081.

[1]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[2]

Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513

[3]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[4]

Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184

[5]

Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

[6]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[7]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[8]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036

[9]

Kui Li, Zhitao Zhang. Liouville-type theorem for higher-order Hardy-Hénon system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3851-3869. doi: 10.3934/cpaa.2021134

[10]

Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510

[11]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[12]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[13]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[14]

Lu Chen, Guozhen Lu, Yansheng Shen. Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022073

[15]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[16]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[17]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[18]

Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 427-440. doi: 10.3934/dcdss.2021083

[19]

Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022078

[20]

Igor Freire, Ben Muatjetjeja. Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 667-673. doi: 10.3934/dcdss.2018041

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (140)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]