-
Previous Article
Qualitative properties of solutions to an integral system associated with the Bessel potential
- CPAA Home
- This Issue
-
Next Article
A class of generalized quasilinear Schrödinger equations
Traveling waves for a diffusive SEIR epidemic model
1. | School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631 |
References:
[1] |
Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., (1-3) (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005. |
[2] |
F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[3] |
V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[4] |
J. Carr and A. Chmaj, Uniquence of the travling waves for nonlocal monostabe equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[5] |
J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dyn. Diff. Equat., 21 (2009), 663-680.
doi: 10.1007/s10884-009-9152-7. |
[6] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[7] |
H. W. Hethcote and van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[8] |
Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models. Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[9] |
J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity, Discrete Contin. Dyn. Sys., 9 (2003), 925-936.
doi: 10.3934/dcds.2003.9.925. |
[10] |
W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. (Ser. A), 115 (1927), 700-721; part II, Proc. R. Soc. Lond. (Ser. A), 138 (1932), 55-83; part III, Proc. R. Soc. Lond. (Ser. A), 141 (1933), 94-112. |
[11] |
W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1257.
doi: 10.1088/0951-7715/19/6/003. |
[12] |
W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold, Discrete Contin. Dyn. Sys. (Ser.B), 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[13] |
X. Liang and X.-Q. Zhao, Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Comm. Pure. Appl. Math., 60 (2007) 1-40.
doi: 10.1002/cpa.20154. |
[14] |
Y. Lv, R. Yuan and Y. Pei, The imact of predation on the coexistence and competitive exclusion of pathogens in prey, Math. Biosci., 251 (2014), 16-29.
doi: 10.1016/j.mbs.2014.02.005. |
[15] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[16] |
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[17] |
J. D. Murray, Mathematical Biology, I and II, third edn., Springer-Verlag, New York, 2002. |
[18] |
S. Ruan and W. Wang, Dynamical behavior of an epidemic models with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.
doi: 10.1016/S0022-0396(02)00089-X. |
[19] |
H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems, J. Nonlinear Sciences, 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[20] |
H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model, J. Dyn. Diff. Equat., DOI 10.1007/s10884-015-9506-2. |
[21] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[22] |
X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[23] |
Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. (Ser. A), 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[24] |
Z.-C. Wang and J. Wu, Travelling waves in a bio-reactor model with stage-structure, J. Math. Anal. Appl., 385 (2012), 683-692.
doi: 10.1016/j.jmaa.2011.06.084. |
[25] |
Z.-C. Wang, J. Wu and R. Liu, Traveling waves of Avian influenza spread, Proc. Amer. Math. Soc., 149 (2012), 3931-3946.
doi: 10.1090/S0002-9939-2012-11246-8. |
[26] |
P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model, J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[27] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[28] |
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-492.
doi: 10.1016/j.mbs.2006.09.025. |
[29] |
R. Xu and Z. Ma, Global stablity of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Analysis: Real World Applications, 10 (2009), 3175-3189.
doi: 10.1016/j.nonrwa.2008.10.013. |
[30] |
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Analysis, 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012. |
[31] |
Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate of the dynamics of SIRS epidemiological models, Discrete Contin. Dyn. Sys. (Ser.B), 13 (2010), 195-211.
doi: 10.3934/dcdsb.2010.13.195. |
[32] |
L. Zhang, B. Li and J. Shang, Stability and travelling waves for a time-delayed population system with stage structure, Nonlinear Analysis: Real World Applications, 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007. |
[33] |
T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.
doi: 10.1016/j.jmaa.2014.04.068. |
show all references
References:
[1] |
Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., (1-3) (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005. |
[2] |
F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[3] |
V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[4] |
J. Carr and A. Chmaj, Uniquence of the travling waves for nonlocal monostabe equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[5] |
J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dyn. Diff. Equat., 21 (2009), 663-680.
doi: 10.1007/s10884-009-9152-7. |
[6] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[7] |
H. W. Hethcote and van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[8] |
Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models. Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[9] |
J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity, Discrete Contin. Dyn. Sys., 9 (2003), 925-936.
doi: 10.3934/dcds.2003.9.925. |
[10] |
W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. (Ser. A), 115 (1927), 700-721; part II, Proc. R. Soc. Lond. (Ser. A), 138 (1932), 55-83; part III, Proc. R. Soc. Lond. (Ser. A), 141 (1933), 94-112. |
[11] |
W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1257.
doi: 10.1088/0951-7715/19/6/003. |
[12] |
W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold, Discrete Contin. Dyn. Sys. (Ser.B), 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[13] |
X. Liang and X.-Q. Zhao, Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Comm. Pure. Appl. Math., 60 (2007) 1-40.
doi: 10.1002/cpa.20154. |
[14] |
Y. Lv, R. Yuan and Y. Pei, The imact of predation on the coexistence and competitive exclusion of pathogens in prey, Math. Biosci., 251 (2014), 16-29.
doi: 10.1016/j.mbs.2014.02.005. |
[15] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[16] |
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[17] |
J. D. Murray, Mathematical Biology, I and II, third edn., Springer-Verlag, New York, 2002. |
[18] |
S. Ruan and W. Wang, Dynamical behavior of an epidemic models with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.
doi: 10.1016/S0022-0396(02)00089-X. |
[19] |
H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems, J. Nonlinear Sciences, 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[20] |
H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model, J. Dyn. Diff. Equat., DOI 10.1007/s10884-015-9506-2. |
[21] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[22] |
X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[23] |
Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. (Ser. A), 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[24] |
Z.-C. Wang and J. Wu, Travelling waves in a bio-reactor model with stage-structure, J. Math. Anal. Appl., 385 (2012), 683-692.
doi: 10.1016/j.jmaa.2011.06.084. |
[25] |
Z.-C. Wang, J. Wu and R. Liu, Traveling waves of Avian influenza spread, Proc. Amer. Math. Soc., 149 (2012), 3931-3946.
doi: 10.1090/S0002-9939-2012-11246-8. |
[26] |
P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model, J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[27] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[28] |
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-492.
doi: 10.1016/j.mbs.2006.09.025. |
[29] |
R. Xu and Z. Ma, Global stablity of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Analysis: Real World Applications, 10 (2009), 3175-3189.
doi: 10.1016/j.nonrwa.2008.10.013. |
[30] |
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Analysis, 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012. |
[31] |
Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate of the dynamics of SIRS epidemiological models, Discrete Contin. Dyn. Sys. (Ser.B), 13 (2010), 195-211.
doi: 10.3934/dcdsb.2010.13.195. |
[32] |
L. Zhang, B. Li and J. Shang, Stability and travelling waves for a time-delayed population system with stage structure, Nonlinear Analysis: Real World Applications, 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007. |
[33] |
T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.
doi: 10.1016/j.jmaa.2014.04.068. |
[1] |
Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291 |
[2] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1209-1225. doi: 10.3934/dcdsb.2021087 |
[3] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118 |
[4] |
Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763 |
[5] |
Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021265 |
[6] |
Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 |
[7] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[8] |
Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93 |
[9] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[10] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[11] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[12] |
Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118 |
[13] |
Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867 |
[14] |
Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043 |
[15] |
Junhao Wen, Peixuan Weng. Traveling wave solutions in a diffusive producer-scrounger model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 627-645. doi: 10.3934/dcdsb.2017030 |
[16] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[17] |
Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417 |
[18] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[19] |
Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467 |
[20] |
F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]