Citation: |
[1] |
G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., 57 (2008), 213-246.doi: 10.1512/iumj.2008.57.3315. |
[2] |
G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincare Anal. Non Linaire, 25 (2008), 567-585.doi: 10.1016/j.anihpc.2007.02.007. |
[3] |
I. H. Biswas, On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution framework, SIAM J. Control Optim., 50 (2012), 1823-1858.doi: 10.1137/080720504. |
[4] |
I. H. Biswas, Regularization by $\frac{1}{2}$-Laplacian and vanishing viscosity approximation of HJB equations, J. Differential Equations, 255 (2013), 4052-4080.doi: 10.1016/j.jde.2013.07.056. |
[5] |
L. Caffarelli and L. Silvestre, Regularity theory for nonlinear integro differential equations, Communications in Pure and Applied Mathematics, 62 (2009), 597-638.doi: 10.1002/cpa.20274. |
[6] |
L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and quasi geostrophic equation, Annals of Math., 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903. |
[7] |
L. Caffarelli and L. Silvestre, Regularity results for non-local equations by approximations, Arch. Ration. Mech. Anal., 200 (2011), 59-88.doi: 10.1007/s00205-010-0336-4. |
[8] |
L. Caffarelli and L. Silvestre, The Evans-Krylov theorem for nonlocal fully nonlinear equations, Ann. of Math., 174 (2011), 1163-1187.doi: 10.4007/annals.2011.174.2.9. |
[9] |
H. C. Lara and G. Davila, Regularity for solutions of nonlocal parabolic equations, Calc. var. Partial Differential Equations, 49 (2014), 139-172.doi: 10.1007/s00526-012-0576-2. |
[10] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5. |
[11] |
J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331.doi: 10.1007/s00205-006-0429-2. |
[12] |
C. Imbert, A non-local regularization of first order Hamilton Jacobi equations, J. Differential Equation, 211 (2005), 218-246.doi: 10.1016/j.jde.2004.06.001. |
[13] |
H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkcialaj Ekvacioj, 38 (1995), 101-120. |
[14] |
E. R. Jakobsen and K. H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs, J. Differential Equations, 212 (2005), 278-318.doi: 10.1016/j.jde.2004.06.021. |
[15] |
A. Kiselev, F. Nazarov and R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5 (2008), 211-240.doi: 10.4310/DPDE.2008.v5.n3.a2. |
[16] |
N. S. Landkof, Osnovy Sovremennoi Teorii Ptensiala, Nauka, Moscow, 1966. |
[17] |
A. Sayah, Équations d'Hamilton-Jacobi du premier ordre avec termes intégro-différentiels, Comm. Partial Differential Equations, 16 (1991), 1057-1093.doi: 10.1080/03605309108820789. |
[18] |
L. Silvestre, On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion, Advances in Mathematics, 226 (2011), 2020-2039.doi: 10.1016/j.aim.2010.09.007. |
[19] |
L. Silvestre, Hölder estimates for advection fractional-diffusion equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 843-855. |