-
Previous Article
Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent
- CPAA Home
- This Issue
-
Next Article
Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian
Infinitely many solutions for nonlinear Schrödinger system with non-symmetric potentials
1. | Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2 |
2. | Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241 |
3. | Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Chile |
References:
[1] |
A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris Ser., 1342 (2006), 453-458.
doi: 10.1016/j.crma.2006.01.024. |
[2] |
T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Cal. Var. Partial Differential Equations., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6. |
[4] |
J. Y. Byeon and M. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Memoirs of the American Mathematical Society, 229 (2014), 89pp. |
[5] |
K. Chow, Periodic solutions for a system of four coupled nonlinear Schrödinger equations, Phys. Rev. Lett. A, 285 (2001), 319-326.
doi: 10.1016/S0375-9601(01)00369-3. |
[6] |
M. Conti, S. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincar Anal. Non Linaire, 19 (2002), 871-888.
doi: 10.1016/S0294-1449(02)00104-X. |
[7] |
N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincar Anal. Non Linaire, 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009. |
[8] |
M. del Pino, J. C. Wei and W. Yao, Intermediate reduction methods and infinitely many positive solutions of nonlinear Schrödinger equations with non-symmetric potentials, Car. Var. PDE., 53 (2015), 473-523.
doi: 10.1007/s00526-014-0756-3. |
[9] |
Y. Guo and J. Wei, Infinitely many positive solutions for nonlinear Schrödinger system with non-symmetric first order, preprint. |
[10] |
F. Hioe and T. Salter, Special set and solution of coupled nonlinear Schrödinger equations, J. Phys. A: Math. Gen., 35 (2002), 8913-8928. |
[11] |
T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$, Comm. Math Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[12] |
T. C. Lin and J. C. Wei, Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations, Phy. D, 220 (2006), 99-115.
doi: 10.1016/j.physd.2006.07.009. |
[13] |
Z. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger system, Comm. math. Phys., 282 (2008), 721-731.
doi: 10.1007/s00220-008-0546-x. |
[14] |
A. Malchiodi, Some new entire solutions of semilinear elliptic equations on $\mathbb{R}^{N}$, Adv. Math., 221 (2009), 1843-1909. |
[15] |
M. Mitchell and M. Segev, Self-trapping of inconherent white light, Nature, 387 (1997), 880-883.
doi: 10.1038/43136. |
[16] |
M. Musso, F. Pacard and J. Wei, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc., 14 (2012), 1923-1953.
doi: 10.4171/JEMS/351. |
[17] |
B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302. |
[18] |
S. J. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Rational. Mech. Anal., 208 (2013), 305-339.
doi: 10.1007/s00205-012-0598-0. |
[19] |
E. Timmermans, Phase seperation of Bose Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721. |
[20] |
S. Terracini and G. Verzini, Multipulse phase in $k-$mixtures of Bose-Einstein condenstates, Arch. Rat. Mech. Anal., 194 (2009), 717-741.
doi: 10.1007/s00205-008-0172-y. |
[21] |
L. Wang, J. Wei and S. Yan, A Neumann problem with critical exponent in nonconvex domains and Lin-Ni's conjecture, Trans. Amer. Math. Soc., 362 (2010), 4581-4615.
doi: 10.1090/S0002-9947-10-04955-X. |
[22] |
L. Wang, J. Wei and S. Yan, On Lin-Ni's conjecture in convex domains, Proc. Lond. Math. Soc., 102 (2011), 1099-1126.
doi: 10.1112/plms/pdq051. |
[23] |
L. Wang and C. Zhao, Solutions with clustered bubbles and a boundary layer of an elliptic problem, Discrete Contin. Dyn. Syst., 34 (2014), 2333-2357. |
[24] |
J. C. Wei and T. Weth, Nonradial symmetric bound states for system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293. |
[25] |
J. C. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106.
doi: 10.1007/s00205-008-0121-9. |
[26] |
J. C. Wei and S. S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger equations in $R^n$, Calc. Var. Partial Differential Equations, 37 (2010), 423-439.
doi: 10.1007/s00526-009-0270-1. |
[27] |
J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, CPAA, 11 (2012), 1003-1011. |
show all references
References:
[1] |
A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris Ser., 1342 (2006), 453-458.
doi: 10.1016/j.crma.2006.01.024. |
[2] |
T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Cal. Var. Partial Differential Equations., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6. |
[4] |
J. Y. Byeon and M. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Memoirs of the American Mathematical Society, 229 (2014), 89pp. |
[5] |
K. Chow, Periodic solutions for a system of four coupled nonlinear Schrödinger equations, Phys. Rev. Lett. A, 285 (2001), 319-326.
doi: 10.1016/S0375-9601(01)00369-3. |
[6] |
M. Conti, S. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincar Anal. Non Linaire, 19 (2002), 871-888.
doi: 10.1016/S0294-1449(02)00104-X. |
[7] |
N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincar Anal. Non Linaire, 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009. |
[8] |
M. del Pino, J. C. Wei and W. Yao, Intermediate reduction methods and infinitely many positive solutions of nonlinear Schrödinger equations with non-symmetric potentials, Car. Var. PDE., 53 (2015), 473-523.
doi: 10.1007/s00526-014-0756-3. |
[9] |
Y. Guo and J. Wei, Infinitely many positive solutions for nonlinear Schrödinger system with non-symmetric first order, preprint. |
[10] |
F. Hioe and T. Salter, Special set and solution of coupled nonlinear Schrödinger equations, J. Phys. A: Math. Gen., 35 (2002), 8913-8928. |
[11] |
T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$, Comm. Math Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[12] |
T. C. Lin and J. C. Wei, Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations, Phy. D, 220 (2006), 99-115.
doi: 10.1016/j.physd.2006.07.009. |
[13] |
Z. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger system, Comm. math. Phys., 282 (2008), 721-731.
doi: 10.1007/s00220-008-0546-x. |
[14] |
A. Malchiodi, Some new entire solutions of semilinear elliptic equations on $\mathbb{R}^{N}$, Adv. Math., 221 (2009), 1843-1909. |
[15] |
M. Mitchell and M. Segev, Self-trapping of inconherent white light, Nature, 387 (1997), 880-883.
doi: 10.1038/43136. |
[16] |
M. Musso, F. Pacard and J. Wei, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc., 14 (2012), 1923-1953.
doi: 10.4171/JEMS/351. |
[17] |
B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302. |
[18] |
S. J. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Rational. Mech. Anal., 208 (2013), 305-339.
doi: 10.1007/s00205-012-0598-0. |
[19] |
E. Timmermans, Phase seperation of Bose Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721. |
[20] |
S. Terracini and G. Verzini, Multipulse phase in $k-$mixtures of Bose-Einstein condenstates, Arch. Rat. Mech. Anal., 194 (2009), 717-741.
doi: 10.1007/s00205-008-0172-y. |
[21] |
L. Wang, J. Wei and S. Yan, A Neumann problem with critical exponent in nonconvex domains and Lin-Ni's conjecture, Trans. Amer. Math. Soc., 362 (2010), 4581-4615.
doi: 10.1090/S0002-9947-10-04955-X. |
[22] |
L. Wang, J. Wei and S. Yan, On Lin-Ni's conjecture in convex domains, Proc. Lond. Math. Soc., 102 (2011), 1099-1126.
doi: 10.1112/plms/pdq051. |
[23] |
L. Wang and C. Zhao, Solutions with clustered bubbles and a boundary layer of an elliptic problem, Discrete Contin. Dyn. Syst., 34 (2014), 2333-2357. |
[24] |
J. C. Wei and T. Weth, Nonradial symmetric bound states for system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293. |
[25] |
J. C. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106.
doi: 10.1007/s00205-008-0121-9. |
[26] |
J. C. Wei and S. S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger equations in $R^n$, Calc. Var. Partial Differential Equations, 37 (2010), 423-439.
doi: 10.1007/s00526-009-0270-1. |
[27] |
J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, CPAA, 11 (2012), 1003-1011. |
[1] |
Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242 |
[2] |
Weiming Liu, Chunhua Wang. Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7081-7115. doi: 10.3934/dcds.2016109 |
[3] |
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094 |
[4] |
Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4705-4736. doi: 10.3934/dcds.2021054 |
[5] |
Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427 |
[6] |
Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 |
[7] |
Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265 |
[8] |
Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104 |
[9] |
Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure and Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004 |
[10] |
Lixi Wen, Wen Zhang. Groundstates and infinitely many solutions for the Schrödinger-Poisson equation with magnetic field. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022109 |
[11] |
Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure and Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623 |
[12] |
Dušan D. Repovš. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 401-411. doi: 10.3934/dcdss.2019026 |
[13] |
Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895 |
[14] |
Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431 |
[15] |
Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure and Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003 |
[16] |
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51 |
[17] |
Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095 |
[18] |
Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099 |
[19] |
Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329 |
[20] |
Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]