\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent

Abstract Related Papers Cited by
  • In this paper, we establish the existence of ground state solutions for fractional Schrödinger equations with a critical exponent. The methods used here are based on the $s-$harmonic extension technique of Caffarelli and Silvestre, the concentration-compactness principle of Lions and methods of Brezis and Nirenberg.
    Mathematics Subject Classification: Primary: 34C25, 58E30; Secondary: 47H04.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.

    [2]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [3]

    X. J. Chang and Z. Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.doi: 10.1088/0951-7715/26/2/479.

    [4]

    W. X. Chen, C. M. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [5]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bulletin des Sciences Mathematiques, 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [6]

    J. Davila, M. del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235.doi: 10.2140/apde.2015.8.1165.

    [7]

    J. Davila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differ. Equations, 256 (2014), 858-892.doi: 10.1016/j.jde.2013.10.006.

    [8]

    S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, 68 (2013), 201-216.

    [9]

    J. M. Do ó, O. H. Miyagaki and M. Squassina, Critical and subcritical fractional problems with vanishing potentials, arXiv:1410.0843v3.

    [10]

    J. M. Do ó, O. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, arXiv:1411.0233v1.

    [11]

    E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.doi: 10.1080/03605308208820218.

    [12]

    M. M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.doi: 10.1088/0951-7715/28/6/1937.

    [13]

    P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect A., 142 (2012), 1237-1262.doi: 10.1017/S0308210511000746.

    [14]

    N. Laskin, Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268 (2000), 298-305.doi: 10.1016/S0375-9601(00)00201-2.

    [15]

    N. Laskin, Fractional Schrödinger equation, Physical Review, 66 (2002), 56-108.doi: 10.1103/PhysRevE.66.056108.

    [16]

    Y. Q. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837.doi: 10.1016/j.anihpc.2006.01.003.

    [17]

    P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, I, II}, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

    [18]

    S. A. Molchanov and E. Ostrovskij, Symmetric stable processes as traces of degenerate diffusion processes, Theor. Probab. Appl., 14 (1969), 128-131.

    [19]

    P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. A. Math. Phy., 43 (1992), 270-291.doi: 10.1007/BF00946631.

    [20]

    S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbbR^N$, arXiv:1208.2545.

    [21]

    R. Servadei and and E. Valdinoci, A Brezis-Nirenberg result for nonlocal critical equations in low dimension, Commun. Pure App. Anal., 12 (2013), 2445-2464.doi: 10.3934/cpaa.2013.12.2445.

    [22]

    R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655-676.doi: 10.1007/s13163-015-0170-1.

    [23]

    X. D. Shang and J. H. Zhang, Ground states for fractional Schrödinger equations with critical growt, Nonlinearity, 27 (2014), 187-207.doi: 10.1088/0951-7715/27/2/187.

    [24]

    X. D. Shang, J. H. Zhang and Y. Yang, On fractional Schrödinger equation in $\mathbbR^N$ with critical growth, J. Math. Phys., 54 (2013), 121502.

    [25]

    X. D. Shang, J. H. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent, Commun. Pure Appl. Anal., 13 (2014), 567-584.

    [26]

    K. M. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbbR^N$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.doi: 10.1016/j.nonrwa.2014.06.008.

    [27]

    L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: A tutorial, in T. Bountis, Order and Chaos vol. 10, Patras University Press, 2008.

    [28]

    H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281.doi: 10.1016/S1007-5704(03)00049-2.

    [29]

    M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.doi: 10.1007/978-1-4612-4146-1.

    [30]

    J. F. Yang and X. P. Zhu, On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains, I. Positive mass case, Acta Math. Sci. (English Ed.), 7 (1987), 341-359.

    [31]

    J. G. Zhang, X. C. Liu and H. Y. Jiao, Multiplicity of positive solutions for a fractional Laplacian equations involving critical nonlinearity, arXiv:1502.02222v1.

    [32]

    L. G. Zhao and F. K. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150-2164.doi: 10.1016/j.na.2008.02.116.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(298) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return